Spelling suggestions: "subject:"didaxis"" "subject:"diataxis""
1 |
Fast-transient current control strategy and other issues for vector controlled ac drivesKonghirun, Mongkol January 2003 (has links)
No description available.
|
2 |
Control Strategies for Seamless Transition between Grid Connected and Islanded Modes in MicrogridsDas, Dibakar January 2017 (has links) (PDF)
The popularity of distributed generating (DG) sources have been increasing over the past few years. With the increasing penetration of these DGs, the concept of micro grid is becoming popular. A micro grid is a small power system network with distributed generating sources which can operate seamlessly irrespective of the presence of the utility grid. Operating the micro grid in this manner increases system reliability and reduces power interruptions. However, it introduces several control challenges.
This thesis aims at analysing the behaviour of a micro grid system during the transition between grid connected mode and islanded mode of operation and address the control challenges through novel schemes. With the presence of grid, the micro grid system variables, such as voltage and frequency, are strictly regulated by the grid. The local sources follow the voltage and frequency reference set by the grid and supply constant power. With the loss of grid, that is when the system is islanded, the network variables need to be regulated by the local sources. The control structures for the inverter-based sources during the two operating modes are detailed in the present work.
With the loss of grid, the system should be able to transfer seamlessly to islanded mode without any transients. Similarly, when the grid supply is restored, the micro grid should seamlessly resynchronize to the grid without any transients. This thesis proposes two novel controller schemes for achieving seamless transfer between grid-connected and islanded mode in micro grids. The rst scheme uses an output feedback topology to reduce the transitions during mode transfer. The second scheme uses a Linear Quadratic Regulator (LQR) theory based compensator to achieve seamless transfer. The performance of the proposed schemes have been validated through simulations on a benchmark micro grid network for various operating conditions.
An experimental micro grid set-up is developed with a single inverter based DG source. The droop control scheme for islanded mode of operation has been validated on hardware.
|
3 |
Modeling, Control and Design Considerations for Modular Multilevel ConvertersNajmi, Vahid 25 June 2015 (has links)
This thesis provides insight into state-of-the-art Modular Multilevel Converters (MMC) for medium and high voltage applications. Modular Multilevel Converters have increased in interest in many industrial applications, as they offer the following advantages: modularity, scalability, reliability, distributed location of capacitors, etc. In this study, the modeling, control and design considerations of modular based multilevel converters, with an emphasis on the reliability of the converter, is carried out. Both modular multilevel converters with half-bridge and full-bridge sub-modules are evaluated in order to provide a complete analysis of the converter. From among the family of modular based hybrid multilevel converters, the newly released Alternate Arm Converter (AAC) is considered for further assessment in this study. Thus, the modular multilevel converter with half-bridge and full-bridge power cells and the Alternate Arm Converter as a commercialized hybrid structure of this family are the main areas of study in this thesis. Finally, the DC fault analysis as one of the main issues related to conventional VSC converters is assessed for Modular Multilevel Converters (MMC) and the DC fault ride-through capability and DC fault current blocking ability is illustrated in both the Modular Multilevel Converter with Full-Bridge (FB) power cells and in the Alternate
Arm Converter (AAC). Accordingly, the DC fault control scheme employed in the converter and the operation of the converter under the fault control scheme are explained.
The main contributions of this study are as follows: The new D-Q model for the MMC is proposed for use in the design of the inner and outer loop control. The extended control scheme from the modular multilevel converter is employed to control the Alternate Arm Converters. A practical reliability-oriented sub-module capacitor bank design is described based on different reliability modeling tools. A Zero Current Switching (ZCS) scheme of the Alternate Arm Converter is presented in order to reduce the switching losses of the Director Switches (DS) and, accordingly, to implement the ZCS, a design procedure for the Arm inductor in the AAC is proposed. The capacitor voltage waveform is extracted analytically in different load power factors and the waveforms are verified by simulation results. A reliability-oriented switching frequency analysis for the modular multilevel converters is carried out to evaluate the effect of the switching frequency on the MMC's operation. For the latter, a DC fault analysis for the MMC with Full-Bridge (FB) power cells and the AAC is performed and a DC fault control scheme is employed to provide the capacitor voltage control and DC fault current limit, and is illustrated herein. / Master of Science
|
4 |
Řízení trojfázového sinusového zdroje / Control of Three-phase Sinusoidal Power SourceŽůrek, Tomáš January 2014 (has links)
This thesis deals with control of three phase inverter as three phase sinusoidal voltage source for UPS application. Thesis is split to two parts, teoretical and practical. Teoretical part deals with three phase inverter topology analysis according requirement of neutral line wire and possibilities of generating sinusoidal PWM in depend of topology. There are also analysed properties of contorled system and designed 3 regulation methods with simulations. Second part of thesis deals with realisation of sinusoidal power source with inverter borrowed by Elcom company. To inverter control is used digital signal controler TMS320F28335 with implemented control algorithms. There are also presented the measurement results of the prototype of power source. In conclusion, simulation results are compared with measurements and achieved results are summarized.
|
Page generated in 0.0224 seconds