• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulator test and evaluation of a drowsy driver detection system and revisions to drowsiness detection algorithms

Lewin, Mark Gustav 22 August 2008 (has links)
This study was undertaken to simulator test and evaluate a complete drowsy driver detection system. The goal of the study was to recommend optimal specifications for a system to be further studied in an actual vehicle. The system used a set of algorithms developed from previously collected data and a set of previously optimized advisory tones, advisory messages, alarm stimuli, and drowsiness countermeasures. Detection occurred if eye closure or lane excursion exceeded predetermined thresholds. Data were obtained from six sleep-deprived subjects who drove a motion base automobile simulator late at night. Each subject was trained in carefully observing lane boundaries, using a device which sounded an alarm if lane boundaries were exceeded. The performance aspect of the system dominated the detection process. None of the algorithms tracked well with the measures they were designed to estimate; correlations were much lower than expected. The algorithms relied heavily on the positioning of the vehicle relative to the lane. / Master of Science
2

Driver Drowsiness Monitoring Based on Yawning Detection

Abtahi, Shabnam 20 September 2012 (has links)
Driving while drowsy is a major cause behind road accidents, and exposes the driver to a much higher crash risk compared to driving while alert. Therefore, the use of assistive systems that monitor a driver’s level of vigilance and alert the fatigue driver can be significant in the prevention of accidents. This thesis introduces three different methods towards the detection of drivers’ drowsiness based on yawning measurement. All three approaches involve several steps, including the real time detection of the driver’s face, mouth and yawning. The last approach, which is the most accurate, is based on the Viola-Jones theory for face and mouth detection and the back projection theory for measuring both the rate and the amount of changes in the mouth for yawning detection. Test results demonstrate that the proposed system can efficiently measure the aforementioned parameters and detect the yawning state as a sign of a driver’s drowsiness.
3

Driver Drowsiness Monitoring Based on Yawning Detection

Abtahi, Shabnam 20 September 2012 (has links)
Driving while drowsy is a major cause behind road accidents, and exposes the driver to a much higher crash risk compared to driving while alert. Therefore, the use of assistive systems that monitor a driver’s level of vigilance and alert the fatigue driver can be significant in the prevention of accidents. This thesis introduces three different methods towards the detection of drivers’ drowsiness based on yawning measurement. All three approaches involve several steps, including the real time detection of the driver’s face, mouth and yawning. The last approach, which is the most accurate, is based on the Viola-Jones theory for face and mouth detection and the back projection theory for measuring both the rate and the amount of changes in the mouth for yawning detection. Test results demonstrate that the proposed system can efficiently measure the aforementioned parameters and detect the yawning state as a sign of a driver’s drowsiness.
4

Driver Drowsiness Monitoring Based on Yawning Detection

Abtahi, Shabnam January 2012 (has links)
Driving while drowsy is a major cause behind road accidents, and exposes the driver to a much higher crash risk compared to driving while alert. Therefore, the use of assistive systems that monitor a driver’s level of vigilance and alert the fatigue driver can be significant in the prevention of accidents. This thesis introduces three different methods towards the detection of drivers’ drowsiness based on yawning measurement. All three approaches involve several steps, including the real time detection of the driver’s face, mouth and yawning. The last approach, which is the most accurate, is based on the Viola-Jones theory for face and mouth detection and the back projection theory for measuring both the rate and the amount of changes in the mouth for yawning detection. Test results demonstrate that the proposed system can efficiently measure the aforementioned parameters and detect the yawning state as a sign of a driver’s drowsiness.
5

Systém pro sledování únavy řidiče / Driver Fatigue Monitor

Hošek, Roman January 2012 (has links)
This diploma thesis deals with the options of image processing on mobile platforms, especially on Android operating system, and their use in a driver drowsiness detection system. The introductory part analyses the influence of drowsiness on drivers, focusing chiefly on the microsleep, and describes the already existing driver drowsiness detection systems. The thesis proceeds by the description of possibilities of image processing on mobile platforms with the emphasis on Android operating system together with the OpenCV library, known from the desktop interface. This is followed by comparison of various options of library implementation on a mobile platform. The chapter on image processing describes the algorithms for the detection of objects in the image, usable for detection of face, eyes and their posture. The practical part implements the selected methods for the Android operating system. A referential application was created to provide an explanatory demonstration of these methods on a real device. The individual methods are compared on the basis of time consumption, error rate and other factors.

Page generated in 0.0775 seconds