1 |
Untersuchung der Dynamik fluider Partikel auf Basis der Volume of Fluid MethodeSchmidtke, Martin January 2008 (has links)
Die in dieser Arbeit vorgestellten Simulationen aufsteigender fluider Partikel wurden mit dem CFD-Programm FS3D durchgeführt, welches auf der Volume-of-Fluid (VoF) Methode basiert. Die Validierung des Codes erfolgt durch Vergleich der numerischen Lösungen für schleichende Strömungen mit analytischen Lösungen, wobei eine gute Übereinstimmung festgestellt wird. Im ersten Teil der Dissertation werden Simulationen für den freien Aufstieg von Öltropfen in Wasser mit experimentellen Beobachtungen hinsichtlich der Aufstiegsgeschwindigkeit, der Tropfenform und der Bewegungsbahn verglichen. Die Aufstiegsgeschwindigkeiten und Widerstandsbeiwerte sind vergleichbar, die simulierten Tropfen sind jedoch deutlich flacher. Dieser Unterschied kann durch Verunreinigungen der Grenzfläche im Experiment verursacht sein. Der Übergang von einem gradlinigen Aufstieg zu zickzack-förmigen Aufstiegsbahnen kann mit Hilfe der Simulationen auf Instabilitäten im Nachlauf der Blasen zurückgeführt werden, die zu einer periodischen Wirbelablösung führen. Im zweiten Teil der Dissertation wird der Aufstieg von Blasen in linearen Scherströmungen untersucht. Steigen die Blasen in einer vertikalen Scherströmung auf, so beobachtet man eine seitliche Migration. Diese seitliche Migration der Blasen wird durch die sogenannte Liftkraft verursacht, deren Vorzeichen und Betrag von der Blasengröße und den Stoffeigenschaften der Flüssigkeit abhängt. Die Simulationen zeigen, daß das Vorzeichen der Liftkraft für eher sphärische Blasen durch den Bernoulli-Effekt erklärt werden kann. An stark deformierten Blasen hingegen wirkt die Liftkraft in umgekehrter Richtung. Dieses Phänomen tritt auch in den Simulationen auf. Verschiedene Hypothesen für die Ursache dieses Phänomens werden überprüft. Die bekannteste experimentelle Korrelation für die Liftkraft von Tomiyama u.a. (2002) wird durch Simulation von realen Flüssigkeiten mit bekannten Stoffeigenschaften wie auch von Modellfluiden mit willkürlichen Stoffeigenschaften validiert und weitgehend bestätigt. Die Lift-Korrelation hat demnach hinsichtlich der Stoffeigenschaften der Flüssigkeit einen größeren Geltungsbereich, als bisher experimentell überprüft wurde. The simulations presented in this thesis were performed with the CFD code FS3D which is based on the Volume of Fluid method. The code is validated using analytical solutions for creeping flows and a good agreement is observed between simulation and analytical solution. In the first part of the thesis, the free rise of oil drops in water is simulated and compared with experimental observations. The results show that the rising velocities and the drag coefficients are similar in both cases, but the simulated drops are flatter (more oblate). This difference may be caused by impurities of the particle surface (surfactants) in the experiments. The simulations show that the transition from rectilinear to periodic trajectories is caused by instabilities in the wake, which lead to a periodic vortex shedding. In the second part of the thesis, the rise of bubbles in linear shear flows is investigated. If bubbles rise in a vertical shear flow, a lateral migration can be observed. This migration is caused by the so called lift force. Sign and magnitude of the lift force depend on the size of the bubble and the material properties of the liquid. The simulation results show that the sign of the lift force on spherical bubbles can be explained by the Bernoulli effect. However, the lift force on more distorted bubbles acts in the opposite direction. This phenomenon can also be observed in the simulation. In this work several hypotheses for the reason of this phenomenon are checked. Furthermore, most common correlation for the lift force (developed by Tomiyama et al. in 2002) is validated for fluids of known material and model fluids with arbitrary material data. The correlation is valid in a wider range of fluid material properties than proved experimentally up to now.
|
2 |
Investigations into the effects of a vibrating meniscus on the characteristics of drop formationLewis, Kevin T. 16 December 2011 (has links)
As drop-on-demand (DOD) applications continue to gain ground in desktop inkjet-printing, 3D printing, fluid mixing, and other areas the demand for higher frequency operations are beginning to push against the current physical boundaries in DOD technology. The current research is exploring the possibility of controlling drop volume and velocity at high frequency ranges where meniscus vibrations can occur between drop formations and affect drop formation characteristics.
A periodic voltage is applied to a piezoelectric disk in order to generate pressure fluctuations in a single nozzle droplet generator, causing the fluid meniscus at the nozzle to vibrate. A single stronger pulse is then superimposed over the periodic waveform at different phases in order to drive drop ejection. The characteristics of the resulting drop, specifically the volume and velocity, are experimentally measured
using a high speed camera with precise timing control. The results of these experiments are then compared to a lumped element model (LEM) developed for the droplet generator geometry used. Within the LEM model framework, special attention was given to the definition of a novel method by which one can measure drop volume within an electroacoustic circuit and also allow meniscus dynamics to affect present and future drop formations.
Experimental results indicate a strong dependence of both drop volume and drop velocity on the phase of the vibrating meniscus at the start of drop formation. Positive meniscus displacements and momentums resulted in large drop volumes and velocities while negative displacements could reduce drop volume or altogether eliminate drop formation. Specifically, positive displacements and momentum of a vibrating meniscus could lead to drop volumes approximately 50% larger than the original drop volume without a vibrating meniscus. Meanwhile, negative meniscus displacements and momentums were shown to have the ability to completely prevent drop formation. Additional potential for drop characteristic control with a vibrating meniscus is discussed alongside observations on the stabilizing affect the vibrating meniscus appears to have on drop velocity as a function of time. Also, flow visualization of the drop formation is provided to demonstrate the added affect the meniscus vibrations have on the drop shapes and break-off profiles.
The LEM model presented demonstrates qualitative agreement with the experimental model, but fails to quantitatively predict drop volumes. Sources of error for the LEM model and potential improvements are discussed. / Graduation date: 2012
|
Page generated in 0.0556 seconds