• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 458
  • 177
  • 132
  • 57
  • 43
  • 17
  • 15
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • Tagged with
  • 1228
  • 254
  • 242
  • 202
  • 165
  • 134
  • 129
  • 129
  • 108
  • 105
  • 102
  • 94
  • 93
  • 93
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Novel gold nanoparticles of drought tolerance enabler GYY4137

Binase, Ntombikayise January 2019 (has links)
>Magister Scientiae - MSc / Different nanoparticles have the ability to improve plant tolerance to drought stress. In the study we report for the first time novel morpholin-4-ium 4-methoxyphenyl (morpholino) phosphinodithioate capped- gold nanoparticles (GYY4137-capped AuNPs). The GYY4137 is a slow releasing hydrogen sulfide (H2S) donor. The GYY4137 AuNPs compared to preliminary experiments of L-serine and L-threonine gold nanoparticles. The nanoparticles were prepared using a simple reflux reduction method in a rolling boil flask at 80 oC. The uncapped GYY4137-AuNPs were relatively stable and had surface plasmon resonance at 562 nm compared to 524 nm and 560 nm of serine-AuNPs and threonine-AuNPs. The nanoparticles were capped with different concentrations (0.1-5 %) of water-soluble poly (ethylene) glycol (PEG) (Mw300) and 0.2% chitosan. The PEG did not fully encapsulate the gold nanoparticles, while the chitosan successfully produced positively charged gold nanoparticles. The formation of chitosan capped GYY4137-AuNPs were verified with UV-Visible spectroscopy (UV-Vis), High Resolution Transmission electron microscopy (HRTEM), Dynamic Light scattering (DLS) and the Zetasizer. The UV-Vis, HRTEM and STEM verified chitosan capped nanoparticles had a surface plasmon resonance peak at 560 nm, with icosahedral, tetrahedron and spherical shaped nanoparticles as the serine-AuNPs that absorb at 560 nm. The agglomerated threonine-AuNPs had a maximum absorbance peak at 524 nm. The chitosan GYY4137-AuNPs had hydrodynamic size of 347.9 nm and zeta potential of + 47 mV, while serine-AuNPs and threonine-AuNPs had hydrodynamic size of 110 nm, zeta potential of -2.9 mV and -230 mV respectively. The polydispersity index (PDI) of the chitosan capped gold nanoparticles was 0.357 compared to 0.406 of both the amino acid gold nanoparticles. The polydispersity index (PDI) showed that the nanoparticles were polydispersed nanoparticles with broad size range as confirmed by the HRTEM and STEM results/ of chitosan capped GYY4137-AuNPs. The sizes of the nanoparticles were 100 nm and 60 nm for GYY4137-AuNPs while the size serine-AuNPs were 60 nm. The gold nanoparticles structural compositions were further confirmed by energy-dispersive X-ray spectrometry (EDX) and Attenuated total reflection infrared spectroscopy (ATR-IR). EDX results proved successful gold nanoparticles synthesis by presence of the element Au in all three nanoparticles and the chitosan GYY4137-AuNPs had 48. 56 wt. % of gold. The FTIR-ATR new bands formation shows that new chemical bonds are formed between the reducing agents, the precursor gold salt solution and capping agents. The shifts showed successful encapsulation with chitosan in GYY4137-AuNPs. The chitosan encapsulation improved surface charge and reactivity of the gold nanoparticles to improve delivery of the hydrogen sulfide donor GYY4137 for later applications to plants.
182

AN ASSESSMENT OF RECENT CHESTNUT OAK MORTALITY ACROSS THE EASTERN UNITED STATES WITH AN EMPHISIS ON INDIANA

Cameron David Dow (15354910) 01 May 2023 (has links)
<p>In 2016, chestnut oak (<em>Quercus prinus</em>) trees across southern Indiana began displaying symptoms of decline disease. In the years following, widespread patches of mortality appeared on slopes and along ridges, prompting the Indiana Department of Natural Resources (IDNR) to investigate. The IDNR noted the presence of <em>Phytophthora cinnamomi </em>on one diseased chestnut oak, leading to the initiation of this study. Our goals were to (1) determine if <em>P. cinnamomi </em>contributed to the widespread decline, (2) determine what site or stand variables were associated with higher rates decline, (3) examine the growth of declining trees prior to the onset of symptoms to determine if drought contributed to decline, and (4) use Forest Service Forest Inventory and Analysis (FIA) data to examine trends in regional chestnut oak mortality.</p> <p>From 2021-2022, we collected thirty fine root and soil samples from declining chestnut oak trees within Morgan-Monroe State Forest, Yellowwood State Forest, and the Hoosier National Forest. Throughout these forests, we established sampling plots within declining and healthy chestnut oak stands. In each plot we recorded site, stand, and tree level variables, then collected tree cores from two or three chestnut oak trees. Fine root samples were tested for the presence of <em>P. cinnamomi </em>at the Purdue Pathogen and Pest Diagnostic Laboratory (PPDL) in West Lafayette, Indiana.</p> <p>We used binomial linear regression to test for significant (α = 0.05) relationships between site and stand variables and decline, where a binary decline or no decline was used as the response variable. Both basal area increment (BAI) and ring width index (RWI) chronologies were built separately for healthy, declining, and dead chestnut oak trees. We used a paired t-test (α = 0.05) to test for significant differences in 10-year segments of BAI between the three chronologies. Finally, we used linear regression to test for significant (α = 0.05) effects of the standardized precipitation-evapotranspiration index (SPEI) in current and previous year growing seasons on RWI. Chestnut oak mortality volume across the eastern United States was calculated using the EVALIdator tool provided by USDA-FS FIA. Associations between chestnut oak mortality recorded by FIA and several climate and topographical variables were examined using a random forest classification.</p> <p>Out of thirty fine root samples, only one tested positive for the presence of <em>P. cinnamomi</em>, indicating that this decline was not associated with the pathogen. The analysis of site and stand variables revealed a greater chance of decline on east and northeastern facing slopes, with a slight increase in decline likelihood with increasing stand density. There was significantly lower BAI in dead and declining trees long before decline symptoms began, a pattern consistent with previous drought induced declines. We observed a significant relationship between RWI and SPEI in the early growing season (June and 3-month June SPEI) and throughout almost all of the prior year’s growing season (May, June, 3-month June, 3-month July, and 3-month August SPEI). Chestnut oak mortality volume across the eastern US steadily increased from 2006-2020, indicating a region-wide increase in mortality. Our random forest classification indicated the importance of increased precipitation and precipitation timing on chestnut oak mortality.</p> <p>Chestnut oak decline observed in southern Indiana was induced by a series of droughts in 2005, 2007, and 2012. The greater early life BAI of chestnut oak which were impacted by decline revealed that individuals which likely prioritized stem growth over root growth were predisposed to decline and mortality from these droughts. This prioritization could be brought on by genetic differences, favoring rapid height growth in developing even-aged stands, or by an abundance of moisture availability. Our FIA analysis of mortality revealed increased mortality volume across many states from 2006-2020, and that chestnut oak mortality may be related to greater precipitation compared to historic levels. Considering these results, we suspect that chestnut oak which have recently died or are currently declining are likely individuals which lack the root system to endure repeated drought.</p>
183

Spatiotemporal Variations of Drought Persistence in the South-Central United States

Leasor, Zachary T. 26 October 2017 (has links)
No description available.
184

Application of Kriging method for drought study

Joo, Sin Hen January 1989 (has links)
No description available.
185

A study of hydrologic drought using streamflow as an indicator

Stenson, Jennifer R. January 1989 (has links)
No description available.
186

Investigation of drought severity using probabilistic methods

Teoh, Choo B. January 1990 (has links)
No description available.
187

Optimal reservoir operation for drought management

Kleopa, Xenia A. January 1990 (has links)
No description available.
188

EFFECT OF DRYING INDUCED AFFORESTATION ON PEATLAND ECOHYDROLOGY: IMPLICATIONS FOR WILDFIRE VULNERABILITY

Baisley, Steven A. 10 1900 (has links)
<p>Peatlands cover 170 million hectares of Canada's land and are long thought to be resistant to consumption by wildfire. However, boreal peatlands are likely to become increasingly vulnerable to wildfire as climate change lowers water tables and exposes deeper peat to burning. Currently, the Canadian Forest Fire Weather Index (FWI) System is used to assess vulnerability of peat to ignition and consumption, despite being developed for upland soils. Given the need to assess wildfire risk in peatlands, this study investigated the range and variability of key variables relevant to wildfire hydrology of the subsurface and canopy across five peatlands. Road impacted and drained peatlands were included to examine the influence of drying on afforestation (a surrogate for a future drier climate) and extend the range of parameterizations for peatlands.</p> <p>Increased drying led to significant increases in canopy fuel loads coupled with increased interception (upwards of 97%) and canopy storage, highlighting failures of the current FWI rainfall routine. Increased drying led to enhanced transpiration across impacted (≈ 2.8 mm d<sup>-1</sup>) compared to pristine sites (≈ 0.68 mm d<sup>-1</sup>). However, increases in above ground vulnerability were somewhat offset by ecohydrological feedbacks serving to increase peat moisture retention in the drier sites. But the most severely impacted peatland displayed the poorest moisture retention qualities of all peatlands perhaps indicating the existence of a threshold response to drying induced afforestation on peat moisture retention properties.</p> <p>Our findings suggest that modified FWI components are suitable for predicting the general moisture status and fire danger in boreal peatlands, highlighting key areas in the parameter to be improved.</p> / Master of Science (MSc)
189

Drought Stress Responses in a Populus Hybrid Complex in Southern Alberta

Weber, Lisa 03 1900 (has links)
Stomatal response of narrow leaf poplar (P. angustifolia; (PA)), balsam poplar (P. balsamifera; (PB)), cottonwood (P. deltoides; (PD)), and a P. angustifolia X P. balsamifera hybrid (PX) was studied in the field and in controlled environments. Mild water stress was occurring in both field studies, as evidenced by pre-dawn Ψ values of no less than -0.3 MPa; controlled experiments were more severe, with values dropping below -1.0 MPa. Stomatal conductance patterns differed for each species, and suggest that in terms of tolerating drought stress, PX > PA > PB > PD. These patterns were significantly influenced by microclimate conditions; severe conditions caused partial or complete stomatal closure, even in the presence of low water stress. Preconditioning plants through brief, repeated exposure to water stress resulted in stomatal closure at approximately -1.0 MPa, a higher level Ψ than is otherwise indicated for members of the genus Populus. It may thus be a valuable component of drought resistance for these species. Dieback studies indicated dissimilar patterns of dieback between PA and PB; PA experienced dieback on a large number of small branches while that of PB occurred on a small number of main branches. These results suggests that the drought stress response may differ between the two species, and may further indicate that the pattern of dieback is reflective of the physiological response to drought stress. / Thesis / Master of Science (MS)
190

Evaluation of Management Strategies and Physiological Mechanisms of Agrostis Species for Reduced Irrigation Environments

Golden, Lisa C 29 August 2014 (has links) (PDF)
Water is a basic necessity for turfgrass growth and metabolic processes, with optimal levels required for the maintenance of turf quality and function. As water restrictions for irrigation of landscapes become more widespread across the United States, turfgrass managers will need to rely on management strategies to improve the performance of turfgrasses under reduced irrigation environments. Therefore, the objectives of the research were to (i) compare the performance of different Agrostis species and cultivars under reduced irrigation, (ii) evaluate the use of wetting agents for maintaining turf quality under reduced irrigation, (iii) and examine the physiological mechanisms associated with improved drought resistance traits of Agrostis species. To address our primary objectives, we conducted a two-year field study comparing cultivars of three bentgrass species, including ‘Revere’ and ‘Tiger II’ colonial bentgrasses (Agrostis capillaris), ‘Legendary’ and ‘Greenwich’ velvet bentgrasses (A. canina), and ‘13M’, ‘T-1’, ‘L-93’, and ‘Penncross’ creeping bentgrasses (A. stolonifera) in response to reduced irrigation with and without the use of a wetting agent. In general, the use of a wetting agent did not result in any significant differences in turf quality or soil moisture content among treatments. There were significant differences in turf quality among bentgrass species and cultivars under reduced irrigation. Colonial bentgrass cultivars maintained high turf quality, and were found to be well suited for fairways under reduced irrigation. Due to excessive thatch accumulation in our study, velvet bentgrass cultivars exhibited significant declines in quality regardless of irrigation level. Among creeping bentgrass cultivars, T-1 exhibited improved drought tolerance compared to the older cultivars of creeping bentgrass. Based on results from the field study, we further evaluated the drought resistance and recovery characteristics among five cultivars of colonial bentgrass (‘Barking’, 'Tiger II’, ‘Revere’, ‘Capri’, and ‘Greentime’). Under moderate drought stress, Barking, Tiger II, and Revere all exhibited lower leaf relative water content levels compared to Capri and Greentime, although no significant differences in turf quality or soil water content were observed during the drought period. Following re-watering, Barking and Tiger II exhibited the most rapid recovery from drought (as measured by percent green cover), while Capri and Greentime exhibited delayed recovery. Therefore, although significant differences in turf performance during drought stress were not observed, recovery potential seems to vary among the different cultivars of colonial bentgrass.

Page generated in 0.1472 seconds