• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of PLGA Nanoparticles for Pharmaceutical Applications

Sun, Yanqi 08 1900 (has links)
PLGA have already been successfully applied for controlled drug delivery systems by the pharmaceutical industry due to its biocompatibility, biodegradability and ease of processing. It has recently further been developed and formulated into a form of nanoparticle. The single emulsion evaporation method was used to prepare nanoparticles in this study. By varying different parameters such as the concentration of regents, the type of surfactant and emulsion method, different particle sizes and size distribution of PLGA nanoparticles could be obtained. The stability of PLGA nanoparticles was further investigated by assessing their thermal property over a certain period of time using DSC. The decrease of Tg confirmed the hydration and degradation of PLGA polymers and nanoparticles. The changes of surface morphology showed that the nanoparticles were in spherical shape and maintained smooth surface before the storage, whereas they started to lose their original shapes as well as agglomerate to each other after 2-week storage. These results suggested that there was an erosion and degradation of PLGA nanoparticles during storage. Ibuprofen-loaded PLGA nanoparticles have been successfully prepared by o/w single emulsion evaporation method. During the stability study, a faster degradation rate compared to non-loaded PLGA nanoparticles was exhibited, showing that Ibuprofen increased the degradation rate of PLGA nanoparticles. According to the results of drug releasing study, PLGA nanoparticles exhibiting a slower drug release rate than pure drug which proved that drug-nanoparticule system could effectively increase the stability of drugs. PLGA polymer is a potential material for drug delivery system.

Page generated in 0.0846 seconds