• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 629
  • 191
  • 40
  • 37
  • 35
  • 32
  • 32
  • 32
  • 32
  • 32
  • 32
  • 29
  • 15
  • 7
  • 6
  • Tagged with
  • 1162
  • 1162
  • 208
  • 170
  • 149
  • 128
  • 126
  • 116
  • 111
  • 99
  • 96
  • 95
  • 91
  • 83
  • 82
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

The role of APOBEC3G in acute and early HIV-1 subtype C infection.

Reddy, Kavidha. 02 September 2014 (has links)
Introduction APOBEC3G and other related cellular cytosine deaminase family members have potent antiviral activity. In the absence of HIV-1 Vif, APOBEC3G mutates the viral DNA during viral reverse transcription. Our knowledge of the Vif-APOBEC3G interaction in human populations infected with subtype C HIV-1 is limited. Investigation of interactions between HIV and its host is crucial as it can ultimately be exploited in vaccine and therapy design. We hypothesised that certain APOBEC3G haplotypes and/or their expression in peripheral blood mononuclear cells of seroconverters affect viral setpoint and CD4+ T cell counts. We also hypothesised that certain APOBEC3G genetic variants are associated with increased frequency of G to A hypermutations during primary HIV-1 infection and that Vif variability influences disease progression and its ability to neutralise APOBEC3G haplotypes. Methods Our South African study cohort consisted of females at high risk for HIV-1 infection and women with known recent HIV-1 infection. We used quantitative real-time PCR to measure APOBEC3G expression in HIV- and HIV+ samples during primary infection. APOBEC3G variants were identified by DNA sequencing and TaqMan Genotyping. The HIV-1env gene was sequenced to assess Env diversity and the extent of APOBEC3G induced hypermutations. Vif variability was assessed by plasma derived clonal Vif sequences (n= 10-20 per patient) and Vif function was assessed by APOBEC3G degradation assays and HIV-1 infectivity assays. Results We found no correlation between APOBEC3G expression levels and plasma viral loads (r=0.053, p=0.596) or CD4+ T cell counts (r=0.030, p=0.762) in 32 seroconverters. However, APOBEC3G expression levels were significantly higher in HIV- individuals compared to HIV+ individuals (p<0.0001) including matched pre- and post-infection samples from the same individuals (n=13, p<0.0001). Twenty five single nucleotide polymorphisms (SNPs) were identified within the APOBEC3G region. SNP 186R/R was associated with significantly higher viral loads (p=0.0097) and decreased CD4+ T cell levels (p=0.0081), indicating that 186R/R has a negative effect on HIV restriction. Overall HIV-1 env sequences contained a higher number of APOBEC3F compared to APOBEC3G-induced hypermutations and the number of APOBEC3F-induced hypermutations correlated negatively with viral load (r= -0.6, p=0.006) and positively with CD4 T cell counts (r=0.6, p=0.004). We cloned and sequenced a total of 392 subtype C Vifs, which showed an interpatient diversity of 6.2% to 19.2% at the amino acid level. Interestingly, Vif sequence comparison showed a strong preference for a Lysine or a Serine at position 36 for APOBEC3G 186R/R and APOBEC3G 186H/H individuals, respectively. Selected natural subtype C Vif alleles had greater ability to counteract wild type APOBEC3G 186H as compared to the APOBEC3G 186R variant as shown by both functional and HIV infectivity assays. Conclusions In conclusion, APOBEC3G expression in peripheral blood mononuclear cells does not correlate with viral loads or CD4+ T cell counts during primary HIV-1 subtype C infection. However, genetic variants of APOBEC3G may affect HIV-1 pathogenesis. Amino acid changes in Vif may influence its anti-APOBEC3 activity. HIV-1 subtype C Vifs may have adapted to counteract the more active wild type APOBEC3G as compared to the less active APOBEC3G 186R variant. These studies have improved our understanding of viral-host interactions in African populations and HIV-1 subtype C infections. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2014.
572

HIV Drug Resistant Prediction and Featured Mutants Selection using Machine Learning Approaches

Yu, Xiaxia 16 December 2014 (has links)
HIV/AIDS is widely spread and ranks as the sixth biggest killer all over the world. Moreover, due to the rapid replication rate and the lack of proofreading mechanism of HIV virus, drug resistance is commonly found and is one of the reasons causing the failure of the treatment. Even though the drug resistance tests are provided to the patients and help choose more efficient drugs, such experiments may take up to two weeks to finish and are expensive. Because of the fast development of the computer, drug resistance prediction using machine learning is feasible. In order to accurately predict the HIV drug resistance, two main tasks need to be solved: how to encode the protein structure, extracting the more useful information and feeding it into the machine learning tools; and which kinds of machine learning tools to choose. In our research, we first proposed a new protein encoding algorithm, which could convert various sizes of proteins into a fixed size vector. This algorithm enables feeding the protein structure information to most state of the art machine learning algorithms. In the next step, we also proposed a new classification algorithm based on sparse representation. Following that, mean shift and quantile regression were included to help extract the feature information from the data. Our results show that encoding protein structure using our newly proposed method is very efficient, and has consistently higher accuracy regardless of type of machine learning tools. Furthermore, our new classification algorithm based on sparse representation is the first application of sparse representation performed on biological data, and the result is comparable to other state of the art classification algorithms, for example ANN, SVM and multiple regression. Following that, the mean shift and quantile regression provided us with the potentially most important drug resistant mutants, and such results might help biologists/chemists to determine which mutants are the most representative candidates for further research.
573

Doxorubicin resistance in a small cell lung cancer cell line can be abolished by siRNA down-regulation of cox 1

Aryal, Pratik January 2007 (has links)
Multidrug resistance (MDR) in small cell lung cancer is one of the major causes of failures of chemotherapy. MDR is a means of protection of tumor cells against chemotherapeutic drugs. Although the molecular basis of MDR is not fully understood, genes involved in apoptosis may be mutated. Recent finding of a link between over-expression of an apoptotic gene, cyclooxygenase 1 (cox 1), and MDR suggests that cox 1 is involved in the development of MDR phenotype. This research was an attempt to observe whether up-regulation of cox 1 contributes to the MDR phenotype in small cell lung cancer cells. This research ultimately may provide a mechanism to reverse the abberant up-regulation of apoptosis genes associated with multidrug resistance to either eliminate or control reproduction of cancer cells. Real time RT PCR was used to confirm the up-regulation of cox 1 in cultured MDR resistant small cell lung cancer cells (GLC4). The up-regulated cox 1 expression was down-regulated using RNA interference technology (RNAi) by transfection with an anti-cox 1 siRNA. More than 90% transfection of cells was confirmed using confocal microscopy. Down-regulation of cox 1 was validated as the protein expression significantly decreased (P=0.004) from multidrug resistant small cell lung cancer transfected cells compared to multidrug resistant nontransfected cells. There was decrease level of expression of cox 1 in multidrug resistant cells after the knockdown with siRNA specific to cox 1. The decreased level of cox 1 expression and, therefore, Cox 1 production increased the rate of apoptosis in small cell lung cancer cells as indicated by its sensitivity to the doxorubicin. / Department of Biology
574

Regulation of the putative ykkCD riboswitch by tetracycline and related antibiotics in Bacillus subtilis

Frecker, Nicholas L. 20 July 2013 (has links)
Multi-drug resistance among bacterial pathogens can be mediated by a number of mechanisms, including multidrug efflux pumps. One such pump in Bacillus spp. is ykkCD, a heterodimer of the SMR family consisting of C and D subunits. Previous studies suggest that the expression of ykkCD is controlled by a putative riboswitch and that the antibiotic tetracycline binds to the riboswitch in vitro. Additional studies have shown that two derivatives of tetracycline also bind to the putative riboswitch. These findings now need to be validated by an in vivo study. In this study, the effects that tetracycline and its commercially available derivatives—doxycycline, minocycline, anhydrotetracycline, and oxytetracycline—have on the expression levels of the ykkCD gene in Bacillus subtilis were explored. The level of ykkCD expression was quantified using two different methods: (1) ykkCD protein levels was determined using a ykkCD RNA--galactosidase reporter gene construct and (2) ykkCD mRNA levels was quantified by quantitative RT-PCR. Although the findings from method (1) were inconclusive, upregulation was observed for tetracycline and minocycline, in agreement with the results of the previous binding studies. / Department of Chemistry
575

Mapping the structure of the "e;on"e; and "e;off"e; states of the yykkCD putative riboswitch in Bacillus subtilis / Title on signature form: Mapping the "e;on"e; and "e;off"e; states of the ykkCD putative riboswitch in Bacillus subtilis

Roark, Krystal A. January 2009 (has links)
Access to abstract permanently restricted to Ball State community only / Access to thesis permanently restricted to Ball State community only / Department of Chemistry
576

Using Aspergillus nidulans to study alpha-1,3-glucan synthesis and the resistance mechanism against cell wall targeting drugs

2014 September 1900 (has links)
Systemic fungal infection is a life-threatening problem. Anti-fungal drugs are the most effective clinical strategy to cure such infections. However, most current anti-fungal drugs either have high toxicity or have a narrow spectrum of effect. Meanwhile, anti-fungal drugs are losing their clinical efficacy due to emerging drug resistance. To protect us from these deadly pathogenic fungi, scientists need to study new drug targets and to solve problems related to drug resistance. The cell wall is essential for fungal cell survival and is absent from animal cells, so it is a promising reservoir for screening safe and effective drug targets. Alpha-1,3-glucan is one of the major cell wall carbohydrates and is important for the virulence of several pathogenic fungi. In this thesis, molecular biology and microscopy techniques were used to investigate the function and the synthesis process of α-1,3-glucan in the model fungus A. nidulans. My results showed that α-1,3-glucan comprises about 15% of A. nidulans cell wall dry weight, but also that α-1,3-glucan does not have an important role in cell wall formation and cell morphology. Deletion of α-1,3-glucan only affects conidial adhesion and cell sensitivity to calcofluor white. In contast, elevated α-1,3-glucan content can cause severe phenotypic defects. To study the α-1,3-glucan synthesis process, I systematically characterized four proteins, including two α-1,3-glucan synthases (AgsA and AgsB) and two amylase-like proteins (AmyD and AmyG). Results showed AgsA and AgsB are both functional synthases. AgsB is the major synthase due to its constant expression. AgsA mainly functions in conidiation stages. AmyG is a cytoplasmic protein that is critical for α-1,3-glucan synthesis, likely being required for an earlier step in the synthesis process. In contrast to the other three proteins, AmyD has a repressive effect on α-1,3-glucan accumulation. These results shed light on therapeutic strategies that might be developed against α-1,3-glucan. I also developed a strategy to investigate drug resistance mutations. The tractability of A. nidulans and the power of next generation sequencing enabled an easy approach to isolate single mutation strains and to identify the causal mutations from a genome scale efficiently. I suggest this strategy has applications to study the drug resistance mechanisms of current anti-fungal drugs and even possibly future ones.
577

Small Molecule Inhibitors of Stat3 Protein as Cancer Therapeutic Agents

Page, Brent 19 June 2014 (has links)
Advances in anti-cancer drug development have vastly improved cancer treatment strategies over the past few decades. Chemotherapeutic agents are now being replaced with targeted therapies that have much greater potency and far fewer unpleasant side effects. At the center of this, cell signaling pathways have been targeted as they moderate gene expression, control proliferation and are often dysregulated in cancer. The signal transducer and activator of transcription (STAT) proteins represent a family of cytoplasmic transcription factors that regulate a pleiotropic range of biological processes in response to extracellular signals. Of the seven mammalian members described to date, Stat3 has received particular attention, as it regulates the expression of genes involved in a variety of malignant processes including proliferation, survival, migration and drug resistance. Aberrant Stat3 activation has been observed in a number of human cancers, and its inhibition has shown promising anti-tumour activity in cancer cells with elevated Stat3 activity. Thus, Stat3 has emerged as a promising target for the development of cancer therapeutics. While Stat3 signaling can be inhibited by targeting upstream regulators of Stat3 activation (such as Janus kinase 2), direct inhibition of Stat3 protein may offer improved response, larger therapeutic windows for treatment and fewer side effects. The work presented within this thesis is focused on optimizing known Stat3 inhibitor S3I-201, a small molecule Stat3 SH2 domain binder that was discovered in 2007. We have performed an extensive structure activity relationship study that has produced some of the most potent Stat3 inhibitors in the scientific literature. These compounds showed high-affinity binding to Stat3’s SH2 domain, inhibited intracellular Stat3 phosphorylation and selectively induced apoptosis in a number of cancer cell lines. Lead agents further inhibited tumour growth in xenograft models of human malignancies and had favourable pharmacokinetic and toxicity profiles.
578

Cloning of the Gene, Purification as Recombinant Protein and Functional Characterization of Leishmania mexicana Cytochrome b5 Reductase

Azhari, Ala 01 January 2012 (has links)
Leishmania are protozoan parasites that are transmitted by a sand fly vector. These parasites affect not only humans but also wild animals including domestic dogs and rodents, which form an additional challenge and public health problem to control the disease. Leishmaniasis is an important disease with worldwide distribution, including Saudi Arabia, the Middle East, and other tropical and subtropical areas around the world. Due to the expansion of irrigation and agricultural activities, more exposure to sand fly occurs, which leads to the expansion of leishmaniasis infections as newly emerging disease. Emerging drug resistance in leishmaniasis is an additional problem, contributed by enzymes involved in the detoxification of pharmacological agents and other xenobiotics. Cytochrome b5 reductase (Cb5r) has a high pharmacological significance because of its essential role in fatty acid elongation, biosynthesis of cholesterol (humans) or ergosterol (Leishmania, fungi), and cytochrome P450-mediated detoxification of xenobiotics. Leishmania Cb5r has seven different isoforms whereas human has only one. Cb5r-7 isoform in Leishmania has closest homology to the human Cb5r. The three specific aims of this thesis project are focusing on (i) cloning of the Cb5r-7 isoform from Leishmania mexicana, (ii) its purification as recombinant His-tagged protein from E.coli, and (iii) its functional characterization as potential pharmacological target against Leishmania.
579

Small Molecule Inhibitors of Stat3 Protein as Cancer Therapeutic Agents

Page, Brent 19 June 2014 (has links)
Advances in anti-cancer drug development have vastly improved cancer treatment strategies over the past few decades. Chemotherapeutic agents are now being replaced with targeted therapies that have much greater potency and far fewer unpleasant side effects. At the center of this, cell signaling pathways have been targeted as they moderate gene expression, control proliferation and are often dysregulated in cancer. The signal transducer and activator of transcription (STAT) proteins represent a family of cytoplasmic transcription factors that regulate a pleiotropic range of biological processes in response to extracellular signals. Of the seven mammalian members described to date, Stat3 has received particular attention, as it regulates the expression of genes involved in a variety of malignant processes including proliferation, survival, migration and drug resistance. Aberrant Stat3 activation has been observed in a number of human cancers, and its inhibition has shown promising anti-tumour activity in cancer cells with elevated Stat3 activity. Thus, Stat3 has emerged as a promising target for the development of cancer therapeutics. While Stat3 signaling can be inhibited by targeting upstream regulators of Stat3 activation (such as Janus kinase 2), direct inhibition of Stat3 protein may offer improved response, larger therapeutic windows for treatment and fewer side effects. The work presented within this thesis is focused on optimizing known Stat3 inhibitor S3I-201, a small molecule Stat3 SH2 domain binder that was discovered in 2007. We have performed an extensive structure activity relationship study that has produced some of the most potent Stat3 inhibitors in the scientific literature. These compounds showed high-affinity binding to Stat3’s SH2 domain, inhibited intracellular Stat3 phosphorylation and selectively induced apoptosis in a number of cancer cell lines. Lead agents further inhibited tumour growth in xenograft models of human malignancies and had favourable pharmacokinetic and toxicity profiles.
580

HIV-1 PR P51 Mutant Complex Formation with Inhibitors

Greene, Shaquita T, Zhang, Ying 18 December 2012 (has links)
Human Immunodeficiency Virus (HIV) has become a global pandemic with at least 25 million deaths and no cure. One of the most important targets to inhibit this virus is HIV-1 protease (PR), which is required to cleave the viral proteins needed for maturation of the virus after it invades and replicates in the host cell. There are nine protease inhibitors that are used in AIDS treatment. The virus loses susceptibility to these inhibitors by drug resistance due to mutations. The goal of the project is to examine the highly drug resistant HIV PR P51 in its complex with inhibitors. In this experiment we expressed and purified HIV PR P51 protein. We performed protein crystallization with inhibitors Tipranavir, Amprenavir, Darunavir, and Saquinavir to obtain the structure of the protease and the inhibitors in their complexes. Future analysis of the crystal structures will help with the development of successful therapeutic inhibitors.

Page generated in 0.0782 seconds