• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The response of soybean seeds to the stresses of semi-arid environments during germination and early seedling growth

Hosseini, Mohammad Khajeh January 2000 (has links)
Reduced water availability and salinity are two major environmental factors influencing crop establishment in semi-arid environments. Therefore the effect of reduced water availability using polyethylene glycol (PEG) 4000 solutions and of salinity (NaCl) on the germination of six soybean cultivars was examined. Cultivars differed in their response to reduced water availability and salinity and in their ability to recover from the stresses. A large increase in germination during a recovery period at 0 MPa following water stress suggested that PEG was not toxic whilst the failure of seeds to recover from high salinity revealed the toxic effects of NaCl. At the same water potential, germination in saline conditions was higher than that in PEG and the rate of water uptake by individual seeds was more rapid in NaCl solutions than in PEG. The most plausible explanation for the greater water uptake and germination in NaCl is that seeds accumulated salts which lowered their osmotic potential. The effects of NaCl on seedling growth were much greater when experiments were conducted in a hydroponic system compared with a paper towel method. However, analysis of the solutions soaking the paper towels revealed that 4.25<I> </I>mMolal Ca2<sup>+</sup> was available to the seeds in this system in saline conditions. This may have reduced Na<sup>+</sup> uptake or provided a protective effect against Na<sup>+</sup> toxicity. Germination (40%) was possible at a tissue Na<sup>+</sup> concentration in the embryonic axis of 9.3mg g-1 FW whilst seedling growth was completely inhibited at a tissue Na<sup>+</sup> concentration of 6.1 mg g<sup>-1 </sup>FW. Germination at higher tissue Na<sup>+</sup> concentrations was associated with higher K<sup>+</sup>+Ca2<sup>+</sup> concentrations, suggesting that these ions may protect the seeds in the pregermination phase against salinity. A reduction in seed vigour due to ageing resulted in reduced germination under saline conditions compared to the germination of unaged seeds, but there was no significant interaction between salinity and seed ageing. However, unaged seeds showed a greater increase in germination after transfer to 0 MPa than did the aged seeds. Since both the site of ageing and the toxic effect of NaCl is the cell membrane, there may be additive effects of NaCl toxicity on cell membrane in aged seeds.
2

Identification Studies of Bacillus Spores Using Fluorescence Spectroscopy

Kunnil, Joseph January 2005 (has links)
Fluorescence spectroscopy was examined as a potential technique for identifying aerosol particles like bacterial spores. This technique was used for laboratory measurements on some common biological agent simulants. We have measured the intrinsic steady-state fluorescence emission spectra as a function of the excitation wavelength for several bacterial spores (washed and unwashed) in dry and aqueous suspensions at room temperature using excitation wavelengths from 200 to 600 nm. These measurements were compared to those of common, naturally occurring biological components like fungal spores and pollen and non spore samples like ovalbumin. The spectra of samples were combined into fluorescence profiles or fluorescence fingerprints. Different substrates were used for collection and detection of spores. Each bacterium produces a unique in vitro fluorescence profile when measured in dried and aqueous suspension and exhibits a strong maximum in its fluorescence emission spectrum near 330-340 nm. The fluorescence profiles were reproducible. The complexity of microorganisms made the interpretation of their spectral signature a difficult task. Principal components analysis (PCA) and cluster analysis were done as a data reduction technique for detection and identification from different backgrounds. PCA illustrates that linear combination of detected fluorescence intensities, which are present in different ratios in each of samples studied, can be used to discriminate biological agent simulants from other biological samples. The hydration effects, washing effects and the role of tryptophan on spore fluorescence were also investigated. The emission spectra of the dried spores showed a maximum near 330 nm, suggesting a hydrophobic environment for its tryptophan residues. The aqueous solution of tryptophan showed fluorescence shifted to 360 nm and in ethanol solution the maximum was shifted to 340 nm, suggesting a rather more polar average location of the tryptophan. To find the limit of detection we measured the quantum efficiency (QE) of a few samples. We concluded that spectroscopy techniques coupled with effective interpretation models are applicable to biological simulants agents. Index Heading: Bacteria; Spores; Identification; Fluorescence; Fluorescence Quantum Efficiency; Principal Components Analysis; Cluster Analysis.
3

Identification Studies of Bacillus Spores Using Fluorescence Spectroscopy

Kunnil, Joseph January 2005 (has links)
Fluorescence spectroscopy was examined as a potential technique for identifying aerosol particles like bacterial spores. This technique was used for laboratory measurements on some common biological agent simulants. We have measured the intrinsic steady-state fluorescence emission spectra as a function of the excitation wavelength for several bacterial spores (washed and unwashed) in dry and aqueous suspensions at room temperature using excitation wavelengths from 200 to 600 nm. These measurements were compared to those of common, naturally occurring biological components like fungal spores and pollen and non spore samples like ovalbumin. The spectra of samples were combined into fluorescence profiles or fluorescence fingerprints. Different substrates were used for collection and detection of spores. Each bacterium produces a unique in vitro fluorescence profile when measured in dried and aqueous suspension and exhibits a strong maximum in its fluorescence emission spectrum near 330-340 nm. The fluorescence profiles were reproducible. The complexity of microorganisms made the interpretation of their spectral signature a difficult task. Principal components analysis (PCA) and cluster analysis were done as a data reduction technique for detection and identification from different backgrounds. PCA illustrates that linear combination of detected fluorescence intensities, which are present in different ratios in each of samples studied, can be used to discriminate biological agent simulants from other biological samples. The hydration effects, washing effects and the role of tryptophan on spore fluorescence were also investigated. The emission spectra of the dried spores showed a maximum near 330 nm, suggesting a hydrophobic environment for its tryptophan residues. The aqueous solution of tryptophan showed fluorescence shifted to 360 nm and in ethanol solution the maximum was shifted to 340 nm, suggesting a rather more polar average location of the tryptophan. To find the limit of detection we measured the quantum efficiency (QE) of a few samples. We concluded that spectroscopy techniques coupled with effective interpretation models are applicable to biological simulants agents. Index Heading: Bacteria; Spores; Identification; Fluorescence; Fluorescence Quantum Efficiency; Principal Components Analysis; Cluster Analysis.

Page generated in 0.1109 seconds