• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Analysis of Receiver Systems in Satellite Communications and UAV Navigation Radar

Morin, Matthew Robertson 08 July 2014 (has links) (PDF)
The design of a low cost electronically steered array feed (ESAF) is implemented and tested. The ESAF demonstrated satellite tracking capabilities over four degrees. The system was compared to a commercial low-noise block downconverter (LNBF) and was able to receive the signal over a wider angle than the commercial system. Its signal-to-noise ratio (SNR) performance was poor, but a proof of concept for a low cost ESAF used for tracking is demonstrated. Two compact low profile dual circularly polarized (CP) reflector feed antenna designs are also analyzed. One of the designs is a passive antenna dipole array over an electromagnetic band gap (EBG) surface. It demonstrated high isolation between ports for orthogonal polarizations while also achieving quality dual CP performance. Simulations and measurements are shown for this antenna. The other antenna was a microstrip cross antenna. This antenna demonstrated high gain and quality CP but had a large side lobe and low isolation between ports. A global positioning system (GPS) denied multiple input multiple output (MIMO) radar for unmanned aerial vehicles (UAVs) is simulated and tested in a physical optics scattering model. This model is developed and tested by comparing simulated and analytical results. The radar uses channel matrices generated from the MIMO antenna system. The channel matrices are then used to generate correlation matrices. A matrix distance between actively received correlation matrices to stored correlation matrices is used to estimate the position of the UAV. Simulations demonstrate the ability of the radar algorithm to determine its position when flying along a previously mapped path.
2

Compact Antennas and Arrays for Unmanned Air Systems

Eck, James Arthur 01 December 2014 (has links) (PDF)
A simple and novel dual-CP printed antenna is modelled and measured. The patch antennais small and achieves a low axial ratio without quadrature feeding. The measured pattern showsaxial ratio pattern squinting over frequency. Possible methods of improving the individual element are discussed, as well as an array technique for improving the axial ratio bandwidth. Three endfire printed antenna structures are designed, analyzed, and compared. The comparison includes an analysis of costs of production for the antenna structures in addition to their performance parameters. This analysis concludes that cost of materials primarily reduces the size of antennas for a given gain and bandwidth. An antenna stucture with an annular beam pattern for down-looking navigational radar is proposed. The antenna uses sub-wavelength grating techniques from optics to achieve a highly directive planar reflector which is used as a ground plane for a monopole. A fan-beam array element is fabricated for use in a digitally steered receive array for obstacle avoidance radar. The steered beam pattern is observed. The element-dependent phase shifts for a homodyned signal in particular are explored as to their impact on beam steering.

Page generated in 0.0486 seconds