Spelling suggestions: "subject:"mutlimodality imaging"" "subject:"multmodality imaging""
1 |
Advanced Methods in Molecular Breast ImagingTao, Ashley T. January 2016 (has links)
Molecular breast imaging (MBI) is a relatively new clinical breast imaging modality, which has the potential to have a significant impact in breast cancer screening and perioperative breast imaging for women with high risk factors for developing breast cancer. Two objectives were proposed in this thesis to increase the use of MBI. First, a magnetic resonance (MR)-compatible gamma camera was developed for combined molecular/MR breast imaging. MBI is a functional imaging technique with high specificity and sensitivity but could benefit from the addition of anatomical information from breast MRI for lesion localization, cancer staging, treatment planning and monitoring. A small area (8cm x 8cm) cadmium zinc telluride (CZT) based gamma camera was developed and tested for MR compatibility in both sequential and simultaneous imaging conditions. Results indicated that the gamma camera was minimally affected during both sequential and simultaneous imaging with a gradient echo (GRE) and spoiled gradient echo (GRE) sequence. Signal to noise ratio (SNR) degradation was observed in the MR images but no geometric distortions were observed. Simultaneous imaging is feasible, but a reassessment of the RF shielding would be required to minimize the noise contribution degrading image quality. Second, backscatter photons were investigated as a potential dose reduction technique for MBI. While the effective dose from MBI is relatively low in comparison to other nuclear medicine procedures, the dose is considered high in relation to mammography and in order to increase acceptance as an alternative breast imaging method, dose reduction is an important objective. Backscatter photons have the same spatial information as primary photons but are typically discarded along with other scattered photons. A scatter compensation method called the triple energy window (TEW) was used to extract backscatter photons from the Compton scattering spectrum and added to the primary photons, increasing count sensitivity by 6%. The noise level matched the increase in contrast leading to negligible change in lesion contrast to noise ratio (CNR). Dose reduction is not justified with this particular technique because of the elevated noise level, but the use of backcsatter photons show potential with improved contrast. / Dissertation / Doctor of Philosophy (PhD)
|
2 |
Development of a Silicon Photomultiplier Based Gamma CameraTao, Ashley T. 04 1900 (has links)
<p>Dual modality imaging systems such as SPECT/CT have become commonplace in medical imaging as it aids in diagnosing diseases by combining anatomical images with functional images. We are interested in developing a dual modality imaging system combining SPECT and MR imaging because MR does not require any ionizing radiation to image anatomical structures and it is known to have superior soft tissue contrast to CT. However, one of the fundamental challenges in developing a SPECT/MR system is that traditional gamma cameras with photomultiplier tubes are not compatible within magnetic fields. New development in solid state detectors has led to the silicon photomultiplier (SiPM), which is insensitive to magnetic fields.</p> <p>We have developed a small area gamma camera with a tileable 4x4 array of SiPM pixels coupled with a CsI(Tl) scintillation crystal. A number of simulated gamma camera geometries were performed using both pixelated and monolithic scintillation crystals. Several event positioning algorithms were also investigated as an alternative to conventional Anger logic positioning. Simulations have shown that we can adequately resolve intrinsic spatial resolution down to 1mm, even in the presence of noise. Based on the results of these simulations, we have built a prototype SiPM system comprised of 16 detection channels coupled to discrete crystals. A charge sensitive preamplifier, pulse height detection circuit and a digital acquisition system make up our pulse processing components in our gamma camera system. With this system, we can adequately distinguish each crystal element in the array and have obtained an energy resolution of 30±1 (FWHM) with Tc-99m (140keV). In the presence of a magnetic field, we have seen no spatial distortion of the resultant image and have obtained an energy resolution of 31±3.</p> / Master of Science (MSc)
|
Page generated in 0.0836 seconds