• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of vibrational structure of vibration-based microgenerator

Hsieh, Chih-Wei 21 July 2004 (has links)
The main components of the vibration-based microgenerator incorporate vibratile structure, magnetic thin film, and coils. In this thesis work, bulk-micromachining technology and laser-micromachining technology were used to fabricate the vibratile structure of the microgenerator. And this is the beginning of the development of the microgenerator. Bulk-micromachining technology was widely used in micro-electromechanical system (MEMS). The most advantage of the technology is that it can be integrated with IC process in the future. And the roughness of the wafer is the key point of the etching process. In addition, 355nm UV Nd:YAG laser was also used to fabricate the vibratile structure. The period of fabricating prototype can be shortened by laser-micromachining. In laser-micromachining system, the dual-prism was used to change the direction of the laser beam by adjusting the initial phase of one of the prisms. When the laser beam moves relatively to workstation, the cutting process can be proceeded. By this system, the cutting linewidth is controllable. This technology has be used to fabricate the microstructure successfully, and the aspect ratio is up to 10, and the feature size is 50µm. Circular spiral spring structure was fabricated successfully, and it is to be the vibratile structure of the microgenerator. Finite element software ANSYS was used to simulate the dynamic characterization of the vibratile structure and the vibration testing experiment was carried out. The result shows that the experimental resonant frequency is very close to the simulative resonant frequency. So this vibratile structure can be used in microgenerator.

Page generated in 0.0315 seconds