Spelling suggestions: "subject:"dunnigan"" "subject:"dunnett""
1 |
A methodology for numerical prototyping of inflatable dunnage bagsVenter, Martin Philip 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Dunnage bags are an inflatable dunnage variant, positioned and inflated between
goods in multi-modal containers to restrain and protect the goods while
in transit. This project endeavours to develop a simple method of generating
new numerical prototypes for dunnage bags suitable for simulating operational
loading of the bags. Previous research has produced a model that simulates
the inflation of a paper dunnage bag using a simple pressure load.
A dunnage bag reinforced with plain-woven polypropylene was chosen as
the test case. Woven polypropylene is a highly non-linear, non-continuous,
non-homogeneous material that requires specialised material models to simulate.
A key aspect of this project was to develop a simple method for characterising
woven-polypropylene and replicating it's response with material models
native to LS-DYNA. The mechanical response of the plain-woven polypropylene
was tested using a bi-axial tensile test device. The material response from
physical testing was then mapped to two material models using the numerical
optimiser LS-OPT. The response of the calibrated material models was found
to correlate well with the measured response of the woven material.
Dunnage bags are subjected to cyclic loading in operation. In order to
capture the effects of compressing the contained gas, a gas inflation model was
added to the model that calculates the pressure in the bag based on the Ideal
Gas Law. A full bag model making use of the calibrated material models and
the inflation model was subjected to a cycled boundary condition simulating
loading and unloading of an inflated dunnage bag. The two prototype models
captured the pressure drop in the bag due to material plastic deformation and
the restraining force produced by the bag to within 10 %. The prototype models
were also found suitable for predicting burst pressure in voids of arbitrary
size and shape. / AFRIKAANSE OPSOMMING: Stusakke is 'n opblaasbare soort stumateriaal wat tussen goedere in multimodale
vraghouers geposisioneer en opgeblaas word om sodoende die goedere
vas te druk en te beskerm tydens vervoer. Hierdie projek poog om 'n eenvoudige
manier te ontwikkel om nuwe numeriese prototipes vir stusakke, geskik
om operasionele lading van die sakke te simuleer, te ontwikkel. Vorige navorsing
het 'n model ontwikkel wat die opblaas van 'n papier stusak met eenvoudige
drukkrag simlueer.
'n Hoë-vlak stusak versterk met plein-geweefde polipropileen, is gekies om
getoets te word. Geweefde polipropoleen is 'n hoogs nie-lineêre, onderbroke,
nie-homogene materiaal wat gespesialiseerde materiaalmodelle nodig het vir
simulasie. Een van die fokuspunte van hierdie projek is om 'n eenvoudige
metode te ontwikkel om die karaktereienskappe van polipropoleen te identifiseer en die gedrag daarvan na te maak met die materiaalmodelle van LSDYNA.
Die meganiese reaksie van die plein-geweefde polipropoleen is getoets
met 'n biaksiale/tweeassige trektoets-toestel. Die materiaal se reaksie op die
fisiese toets is ingevoer op 'n numeriese optimiseerder, LS-OPT, om op die
materiaalmodelle te toets. Die reaksie van die gekalibreerde materiaalmodelle
het goed gekorelleer met die gemete reaksie van die geweefde materiaal.
Stusakke word tydens diens onderwerp aan sikliese lading. Om die effek van
die saamgepersde gas vas te stel is 'n gas-opblaasbare model bygevoeg by die
model wat die druk in die sak bereken, soos gebaseer op die Ideale Gas Wet. 'n
Volskaalse sakmodel wat gebruik maak van die gekalibreerde materiaalmodelle
en die opblaas-model is onderwerp aan sikliese grensvoorwaardes wat die lading
en ontlading van 'n opblaasbare stusak simuleer. Die twee prototipe modelle
het die drukverlies in die sak a.g.v. die materiaal-plastiek vervorming en die
bedwingingskrag van die sak beperk tot 10 %. Die protoyipe modelle is ook
geskik bevind om barsdruk in arbitrêre leemtes te voorspel.
|
2 |
Identifying Success Factors in the Wood Pallet Supply ChainSanchez, Leslie Scarlett 25 May 2011 (has links)
Pallets are a critical component of logistics infrastructure. Approximately 1.9 billion pallets are used each year in the United States for transportation of goods, from raw materials to finished products. Solid wood pallets represent 90% to 95% of the pallet market. To run their operations, wood pallet companies deal with suppliers, customers, and other supply chain components. Each of the steps is important to deliver the right products, with the required quality, and in a timely fashion. However, there is little research about the industry's supply chain practices. The objective of this research is to increase the understanding of the U.S. wood pallet manufacturing industry, its supply chain management practices, and factors affecting the supply chain management processes. To accomplish the research objectives, a nationwide mail survey of wood pallet manufacturers was carried out. In total 1,500 companies were sent questionnaires and the response rate was 14%. A model for supply chain success factors was developed based on previous research and was analyzed using the results from the survey.
Results of the survey provide an up-to-date profile of the US wood pallet industry. It was found that pallet production per company was 727,229 units on average during 2009. Out of the 1500 respondents, 38.6% indicated they were medium-sized companies (20 to 99 employees) and 53.9% small companies (1 to 19 employees). Thirty five percentage of respondents indicated that their sales were less than one million dollars and 43% from one to five million dollars. Also, 45% of respondents were involved in pallet recycling or repair, and these companies indicated that, on average, 42% of the material in a recycled pallet is, in fact, new material.
Regarding Supply Chain practices, close to three-quarters (73.1%) of respondents sold their products directly to customers and the order lead time for raw materials to shipment was 1 to 10 days for 81.9% of companies. The most important factors for purchasing decisions are availability, cost, and reliability of supplier (all rated 4.4 in an importance scale from 1 to 5, respectively). Respondents' answers suggest a preference to work with domestic materials (rated 4.3); however, respondents also indicated that there is currently a high level of competition for raw materials (rated 4.3). Results also indicated that information technology (IT) appears to receive little attention from wood pallet manufacturers, given that the importance of items in this area were rated relatively low, especially the use of internet for purchasing and training in IT (rated 2.2 and 2.1, respectively). Lastly, 86.0% of respondents did not believe that their customers would be willing to pay a premium for environmentally certified pallets, citing cost as the major barrier for a higher demand of these products.
Also, a theoretical framework of supply chain management was designed, developed, and tested with factor analysis, allowing identification of seven factors in the wood pallet supply chain: (1) environmental uncertainty, (2) information technology, (3) supply chain relationships, (4) value-added process, (5) supply chain management performance, (6) business management, and (7) customer satisfaction. Relationships between factors were tested using multiple linear regression. Results show that value-added process positively affects supply chain relationships, and these in turn are positively correlated to supply chain management performance and customer satisfaction.
Results from this research are useful for the industry to formulate a well-informed supply chain management strategy by understanding the connections between the different supply chain management practices and the business performance and customer satisfaction. The information presented is also useful for organizations supporting the wood pallet industry to design more effective assistance and educational programs. / Master of Science
|
3 |
Development and validation of a numerical model for an inflatable paper dunnage bag using finite element methodsVenter, Martin Philip 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2011. / Please refer to full text to view abstract. / Imported from http://etd.sun.ac.za. / np2011
|
Page generated in 0.0408 seconds