• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imobilização de α-galactosidase de Aspergillus niger em resina de troca iônica Duolite A-568

Costa, Henrique Coutinho de Barcelos 27 July 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Immobilized enzymes provide many advantages when compared to the usage of their free forms. Among these ones, remarkable advantages are the possibility of the biocatalyst reusability, easy separation at the end of the process, its usage in continuous way and the enhancement of its stability. This work was performed aiming the immobilization of the α-galactosidase enzyme from Aspergillus niger in ion exchange resin and the evaluation of its catalytic activity. Firstly, tests were performed in five different resins: Amberlite 252-Na, Dowex Marathon A, Dowex Marathon C, Duolite A-568 e Duolite S-761. According to the results, Duolite A-568 was chosen as the best support. Therefore, studies were done aiming the optimization of the immobilization process in this resin. Glutaraldehyde 1% (v/v) was used before the enzyme adsorption process and it enhanced the operational stability of the immobilized enzyme. Preliminary tests did not showed difference for the immobilization process at the temperatures of 25 and 40°C. A full factorial design and a central composite design were performed to study the best immobilization conditions varying the pH, the α-galactosidase concentration and the immobilization time. The results led to use the following immobilization conditions: pH 4.5; 15 g/L of α-galactosidase and 3 hours of immobilization. The temperature of maximum activity occurred at 60°C for both free and immobilized enzyme. The activation energy calculated by linear adjustment of Arrhenius equation was 5.66 kcal/mol for soluble α-galactosidase and 4.48 kcal/mol for immobilized α-galactosidase. The optimum pH range obtained for free enzyme was 4.0-5.0 and for immobilized enzyme it was 3.0-6.0. The immobilization process improved the α-galactosidase activity in alkaline pHs. Analysis of pH stability showed that both forms of enzyme were resistant for the pH ranges studied (3.5 to 7.5 for free and 3.0 to 8.0 for immobilized). However, the thermal stability of the biocatalyst immobilized in the support decreased. The kinetic studies without inhibition showed closed values of maximum speed (Vmax) for both enzyme forms (194.5 U for free and 187.7 U for immobilized). Although, the Michaelis-Menten constant (Km) of immobilized enzyme was higher than the free one (18.8 and 12.5 g/L, respectively). The hydrolysis reaction of raffinose was inhibited by the addition of the reaction products, sucrose and galactose, and the results of inhibition by galactose pointed for the competitive inhibition type. Then, storage tests of immobilized α-galactosidase showed that the enzyme maintained its activity even after 145 days when kept at the temperature of 4°C. / O uso de enzimas imobilizadas proporciona muitas vantagens em relação ao seu uso na forma livre. Dentre estas vantagens se destacam a possibilidade de reutilização do biocatalisador, a sua fácil separação ao final do processo, a utilização em modo contínuo e o aumento de sua estabilidade. Este trabalho foi desenvolvido com o objetivo de imobilizar a enzima α-galactosidase de Aspergillus niger em resina de troca iônica e avaliar a sua atividade catalítica. Inicialmente, foram feitos testes preliminares de imobilização em 5 tipos de resinas: Amberlite 252-Na, Dowex Marathon A, Dowex Marathon C, Duolite A-568 e Duolite S-761. Pelos resultados obtidos, Duolite A-568 foi selecionada como melhor suporte e, portanto, estudos foram feitos para a otimização do processo de imobilização nesta resina. Glutaraldeído na concentração de 1% (v/v) foi utilizado anteriormente ao processo de adsorção da enzima e melhorou a estabilidade operacional da α-galactosidase imobilizada. Testes preliminares não indicaram diferença do processo de imobilização para temperaturas de 25 e 40°C. Realizou-se um planejamento fatorial completo e um planejamento composto central para estudar as melhores condições de imobilização variando-se o pH, concentração de α-galactosidase e tempo de imobilização. Os resultados obtidos levaram a utilizar as seguintes condições de imobilização: pH 4,5, concentração de α-galactosidase de 15 g/L e tempo de imobilização de 3 horas. A temperatura de máxima atividade enzimática foi 60°C tanto para a enzima livre quanto imobilizada. O valor da energia de ativação encontrado pelo ajuste linear da equação de Arrhenius foi de 5,66 kcal/mol para α-galactosidase solúvel e 4,48 kcal/mol para α-galactosidase imobilizada. A faixa de pH ótimo obtido para a enzima livre foi 4,0-6,0 e para a enzima imobilizada foi 3,0-6,0. O processo de imobilização melhorou a atividade da α-galactosidase para pHs mais alcalinos. A análise de resistência ao pH mostrou que ambas as formas da enzima foram resistentes para as faixas estudadas (3,5 a 7,5 para livre e 3,0 a 8,0 para imobilizada). No entanto, a resistência térmica do biocatalisador retido no suporte foi menor. O estudo cinético sem inibição apresentou valores de velocidade máxima (Vmáx) próximos para as duas formas da α-galactosidase (194,5 U para livre e 187,7 U para imobilizada), porém o Km da forma imobilizada foi maior que o da livre (18,8 g/L e 12, 5 g/L de rafinose, respectivamente). A reação de hidrólise da rafinose foi inibida pela adição dos produtos da reação, sacarose e galactose, sendo que os resultados de inibição por galactose apontam para o tipo de inibição competitiva Por fim, testes de estocagem da α-galactosidase imobilizada mostraram que a enzima manteve sua atividade mesmo após 145 dias mantida a temperatura de 4°C. / Mestre em Engenharia Química
2

Vývoj techniky difúzního gradientu v tenkém filmu (DGT) pro stanoveni rtuti ve vodných systémech. / Development of Diffusive Gradients in Thin Films Technique for Determination of Mercury in Aquatic Systems

Szkandera, Roman January 2011 (has links)
The theoretical part of this doctoral thesis deals with determination of mercury and its species in aquatic systems. Special attention is paid to the use in situ sampling technique diffusive gradients in thin films technique (DGT) and its development. Current resin gels used for determination of mercury by DGT technique Duolite GT-73, Chelex-100 and Spheron-Thiol are described. Moreover, new types of resin gels including Iontosorb AV modified by imidazole or 6-mercaptopurine and commercially available titanium dioxide. Preparations of resin gels and their basic tests in model solution according to DGT Research are described. Mercury accumulation in relation to time and basic recovery test were tested and capacity of resins was determined. All tested resins meet the requirements of basic DGT Research tests and relative standard deviations of mercury in recovery tests were lower than 10 %. The sorption capacity of resins varied from 1,5 to 6 µmol.l-1 and decreased in following order: Duolite GT-73 > ISAV-IM > Chelex-100 > Spheron-Thiol > TiO2 > ISAV-MP. Mercury sorption on resins was investigated under conditions similar to those in natural waters. It was found that the ionic strength commonly occurring in natural waters does not affect the determination of mercury. The presence of chlorides significantly affects the determination of mercury using DGT with titanium dioxide and therefore this sorbent can not be recommended for the determination of mercury in sea waters. The accumulated amount of mercury, depending on the pH shows that all the sorbents can be used in natural waters with pH in the range form 4 to 8. Mercury sorption is most affected by the presence of humic acids, especially at ion-exchange resins containing other than thiol functional groups. The exception is titanium dioxide for which physical sorption of humic acid metal complexes is typical. Cadmium and copper in model solutions in the molar balance of the excess mostly influenced the sorption of mercury on Chelex-100 and Spheron-Thiol resins. After laboratory tests, the DGT units with studied sorbents were used for the determination of mercury in natural waters of South Moravia (Svratka, Jihlava and Svitava river). Mercury concentration determined using DGT units containing Duolite GT-73 resin was comparable to the total dissolved concentration of mercury in river water provided by direct determination using AAS technique. Order of magnitude smaller concentrations than the total dissolved mercury concentration were found using DGT containing Spheron-Thiol and ISAV-MP resins. These sorbents are probably able to capture only mercury present in the form of labile complexes. This can be used for speciation analysis if more DGT units with different resins are deployed together. Subtracting the measured DGT Spheron-Thiol or ISAV-MP concentrations from the DGT Duolite GT-73 concentration, information about the amount of mercury present in the form of stabile complexes can be obtained. The amount of mercury determined after application of DGT units containing ISAV-IM, Chelex 100 or TiO2 can probably represent the mercury fraction bound in even weaker complexes than fraction determined by Spheron-Thiol and ISAV-MP DGT.
3

Studium vlastností sorpčních gelů pro stanovení rtuti technikou DGT. / Characterization of the resin gels for mercury determination by DGT technique.

Finsterlová, Hana January 2009 (has links)
The aim of this thesis is testing of resin gels used in diffusive gradients in thin films technique (DGT) for determination of mercury in natural waters. The sorbets, chosen for preparation of resing gels were: Duolit GT- 73, Spheron- Thiol, and Chelex 100 and newly modified sorbent Iontosorb AV. At the beginning of work, the preparation procedure of all resing gels was optimized. After optimalization of preparation procedure the resin gels were tested in mercury model solutions. The recovery test and time dependence test were performed. When the basic tests were finished, they were followed by the tests of influence of natural ligand (humic acids and chlorides), and other parameters (above all pH and ionic strenght), on mercury determination by DGT technique.

Page generated in 0.0674 seconds