• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 3
  • 3
  • 2
  • Tagged with
  • 47
  • 47
  • 17
  • 16
  • 16
  • 15
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Finding and characterising the darkest galaxies in the local Group with the Pan-STARRS 1 survey / A la recherche et la caractérisation des galaxies plus sombres dans le groupe local avec le relevé Pan-STARRS 1

Laevens, Benjamin 09 October 2015 (has links)
Cette thèse utilise le relevé de donné du Panoramic Survey Telescope and Rapid Response System 1 Survey pour trouver de nouveaux satellites du Groupe Local: les galaxies naines et les amas globulaires. Le relevé est important pour résoudre les tensions entre les observations et les modèles. Premièrement, un algorithme de détection est développé, découvrant cinq nouveaux satellites. Bien que cinq découvertes soient faites, le nombre de découvertes est inférieur à ce qu’on s’attendrait, en présumant une distribution isotrope de galaxies naines. Ce résultat mène au deuxième objectif de la these: quantifier les limites de détections du relevé PS1. Les cartes d’efficacité de détection du ciel complet peuvent être utilisées pour quantifier la distribution (an)isotrope des galaxies satellites de la Voie Lactée. En outre, ces informations peuvent mener a redériver la fonction de luminosité des satellites. / This thesis uses the Panoramic Survey Telescope and Rapid Response System 1 Survey to find new Local Group satellites such as dwarf galaxies and globular clusters. This survey is instrumental in helping resolve tensions that have become apparent between observation and theories. In a first phase, a search algorithm is developed, discovering five new satellites. Though yielding five discoveries, this number is lower than one would expect, assuming isotropy of the dwarf galaxies. This leads to the second aim of this thesis, namely quantifying the detection limits of the PS1 Survey. The detection efficiency maps over the entire PS1 sky can be used as a stepping–stone towards the quantification of the (an)isotropy of the Milky Way satellites’ distribution. Using this information, the luminosity function of these satellites can be re–derived.
32

Recherche de matière noire, observation du centre galactique avec H.E.S.S.et modernisation des caméras de H.E.S.S. I / Search for dark matter, Galactic Center observation with H.E.S.S. and upgrade of the H.E.S.S. I camera

Lefranc, Valentin 29 June 2016 (has links)
Le réseau de 5 télescopes Tcherenkov au sol H.E.S.S. (High Energy Stereoscopic System) permet de détecter des rayons gamma à très hautes énergies (E>50GeV) pour sonder les phénomènes non thermiques les plus violents de l'univers. Ces rayons gamma peuvent provenir de l'annihilation de particules de matière noire. L'astronomie gamma permet donc de rechercher les signatures de l'annihilation de particules de matière noire dans les régions denses de l'univers. Cette thèse est composée de trois parties. Après un bref rappel sur l'instrument H.E.S.S., sont présentés en premier lieu les tests de performance effectués pour l'étalonnage de la nouvelle électronique utilisée pour la modernisation des caméras des quatre télescopes CT1 à 4. L'analyse des premières données de la caméra CT1 modernisée montre la réduction du temps mort de lecture du réseau qui permettra de bénéficier pleinement de la stéréoscopie entre les 5 télescopes du réseau. La deuxième partie de la thèse traite des 10 ans d'observations de la région du Centre Galactique avec H.E.S.S. ainsi que les récentes observations obtenues avec l'ajout en 2012 du télescope de 28 mètres de diamètre (CT5) au centre du réseau. L'analyse des données de CT5 en direction de la source centrale HESS J1745-290 permet d'avoir accès aux événements aux plus basses énergies accessibles avec H.E.S.S. (100 GeV). Le spectre de la source centrale est en très bon accord avec celui de HESS J1745-290 mesuré avec CT1-4 et les données en dessous de 150 GeV permettent de raccorder ce dernier à celui de la source Fermi 3FGHL J1745.6-2859c.Dans la troisième partie, les 10 ans de données dans la région du Centre Galactique avec la première phase de H.E.S.S sont analysés pour rechercher un signal d'annihilation de matière noire à l'aide d'une méthode de vraisemblance utilisant les caractéristiques spectrale et spatiale du signal de matière noire par rapport à celles du bruit de fond. En l'absence de signal matière noire, les contraintes sont calculées sur la section efficace d'annihilation et, pour la première fois, un réseau de télescope Tcherenkov au sol est capable de sonder la section efficace d'annihilation thermique dans le cas d'un profil de matière noire piqué. La sensibilité sur la section efficace d'annihilation de l'instrument H.E.S.S. utilisant CT5 est ensuite présentée vers le Centre Galactique et la galaxie naine récemment découverte Reticulum II. La dernière partie de cette thèse étudie le potentiel du futur réseau de télescopes Tcherenkov CTA, (Cherenkov Telescope Array) pour la détection d'un signal d'annihilation de matière noire. Vers la région du Centre Galactique le signal de matière noire attendu est significativement augmenté par la contribution de rayons gamma produits par effet Compton inverse d'électrons et positrons énergétiques sur les champs de radiation ambiants. La sensibilité obtenue permet à CTA de sonder la section efficace d'annihilation thermique dans tous les canaux d'annihilation dans le cas d’un profil de matière noire piqué. L’impact sur la sensibilité de CTA des erreurs systématiques et de l’émission diffuse mesurée par Fermi est aussi montré. Dans le cas des galaxies naines satellites de la Voie Lactée, les performances de CTA permettent de les considérer comme des objets spatialement étendus, et d'obtenir une sensibilité compétitive avec celle du Centre Galactique dans le cas d’un profil à cœur de plusieurs kpc. Dans le cas d'un signal de matière noire de type ligne, CTA sera capable de contraindre fortement des modèles spécifiques de matière noire au TeV grâce à l'effet Sommerfeld, comme le Wino et le MDM-5plet. / The ground-based Cherenkov telescope array H.E.S.S. (High Energy Stereoscopic System) is able to detect gamma rays at very high energies (E> 50GeV) to probe the most violent non-thermal phenomena in the universe. These gamma rays can also come from dark matter particle annihilation. Gamma-ray astronomy provides a promising avenue to search for signatures of these annihilations in overdense regions of the universe. This thesis is composed of three parts. After a brief reminder of the H.E.S.S. instrument, the performance tests to calibrate the new electronics used for the modernization of the four cameras CT1-4 telescopes are presented. The analysis of the upgraded camera raw data shows a reduction global array dead time allowing to maximize the benefit of the stereoscopy between the 5 telescopes. The second part of the thesis deals with 10 years of observations of the Galactic Center region with H.E.S.S. and recent observations taken with the 28-meter-diameter telescope (CT5) located at the center of the array. The data analysis towards the central source HESS J1745-290 provides access to events at lower energies (100 GeV). The spectrum of the central source is in very good agreement with the one of HESS J1745-290 measured with CT1-4 and data below 150 GeV enable to connect it to the Fermi 3FGHL J1745.6-2859c source spectrum. In the third part, the 10 years of data in the region of the Galactic Centre with the first phase of H.E.S.S. are scanned for a dark matter annihilation signal using a likelihood method using the spectral and spatial characteristics of the dark matter signal compared to background. No dark matter signal is detected. The constraints are calculated on the annihilation cross section and, for the first time, a ground-based Cherenkov telescope array is capable to probe the thermal cross section in the case of a cuspy dark matter profile. The sensitivity of the annihilation cross section of the H.E.S.S. instrument using CT5 is then presented toward the Galactic Center and the recently discovered dwarf galaxy Reticulum II. The last part of the thesis studies the potential of the future ground-based instrument CTA (Cherenkov Telescope Array) for the detection of dark matter annihilation signal. Towards the Galactic Center region, the expected dark matter signal is significantly increased by the contribution of gamma rays produced by inverse Compton process of energetic electrons and positrons on ambient radiation fields. The sensitivity obtained enables CTA to probe the thermal cross section in all annihilation channels for a cuspy dark matter profile. The impact on CTA sensitivity of systematic errors and diffuse emission measured by Fermi is also shown. In the case of dwarf galaxy satellites of the Milky Way, the CTA performances enable to consider them as extended objects and provide a competitive sensitivity with the Galactic Centre sensitivity for a kpc-core profile. In the case of a line signal, CTA will be able to strongly constrain specific TeV dark matter models through the Sommerfeld effect, as Wino and MDM-5plet.
33

Formation of stars and star clusters in colliding galaxies

Belles, Pierre-Emmanuel Aime Marcel January 2013 (has links)
Mergers are known to be essential in the formation of large scale structures and to have a significant role in the history of galaxy formation and evolution. Besides a morphological transformation, mergers induce important bursts of star formation. These starburst are characterised by high Star Formation Efficiencies (SFEs) and Specific Star Formation Rates, i.e., high Star Formation Rates (SFR) per unit of gas mass and high SFR per unit of stellar mass, respectively, compared to spiral galaxies. At all redshifts, starburst galaxies are outliers of the sequence of star-forming galaxies defined by spiral galaxies. We have investigated the origin of the starburst-mode of star formation, in three local interacting systems: Arp 245, Arp 105 and NGC7252. We combined high-resolution JVLA observations of the 21-cm line, tracing the Hi diffuse gas, with UV GALEX observations, tracing the young star-forming regions. We probe the local physical conditions of the Inter- Stellar Medium (ISM) for independent star-forming regions and explore the atomic-to-dense gas transformation in different environments. The SFR/H i ratio is found to be much higher in central regions, compared to outer regions, showing a higher dense gas fraction (or lower Hi gas fraction) in these regions. In the outer regions of the systems, i.e., the tidal tails, where the gas phase is mostly atomic, we find SFR/H i ratios higher than in standard Hi-dominated environments, i.e., outer discs of spiral galaxies and dwarf galaxies. Thus, our analysis reveals that the outer regions of mergers are characterised by high SFEs, compared to the standard mode of star formation. The observation of high dense gas fractions in interacting systems is consistent with the predictions of numerical simulations; it results from the increase of the gas turbulence during a merger. The merger is likely to affect the star-forming properties of the system at all spatial scales, from large scales, with a globally enhanced turbulence, to small scales, with possible modifications of the initial mass function. From a high-resolution numerical simulation of the major merger of two spiral galaxies, we analyse the effects of the galaxy interaction on the star forming properties of the ISM at the scale of star clusters. The increase of the gas turbulence is likely able to explain the formation of Super Star Clusters in the system. Our investigation of the SFR–H i relation in galaxy mergers will be complemented by highresolution Hi data for additional systems, and pushed to yet smaller spatial scales.
34

Star and stellar cluster formation in gas-dominated galaxies / Formation d’étoiles et d’amas stellaires dans les galaxies dominées par le gaz.

Fensch, Jérémy 28 September 2017 (has links)
Nous étudions la formation d’étoiles et d’amas d’étoiles dans les galaxies dominées par le gaz. Ce terme réfère en premier lieu aux galaxies de l’époque du pic de formation d’étoiles dans l’histoire de l’Univers, qui s’est déroulé vers z ~ 2, mais aussi à leurs analogues locaux, les galaxies naines de marées. En premier lieu, en utilisant des simulations numériques, nous montrons que les galaxies massives typiques de z=2, avec une fraction de gaz d’environ 50%, forment des structures gazeuses massives (10**7-8 masses solaires) et liées gravitationnellement, appelées grumeaux dans la suite. Ces grumeaux ne se forment dans des galaxies avec une fraction de gaz inférieure à 25%. Nous présentons ensuite une étude observationnelle d’un analogue local de grumeaux de galaxies à z=2, la galaxie naine de marée NGC 5291N. Une analyse des raies d’émission de cette galaxie montre la présence de chocs sur les pourtours de l’objet. La photométrie des amas d’étoiles de cette galaxie montre que les amas les plus jeunes (< 10 millions d’années) sont significativement moins massifs que les amas plus âgés. Ceci peut être le signe de fusions progressives d’amas et/ou d’une forte activité de formation stellaire dans ce système il y a environ 500 millions d’années.Dans un second lieu nous étudions comment la fraction de gaz influe sur la formation d’étoiles et d’amas stellaires dans des fusions de galaxies à z=2. En utilisant des simulations numériques nous montrons que ces fusions n’augmentent que relativement peu le taux de formation d’étoiles et d’amas stellaires comparativement aux fusions de galaxies locales, à faible fraction de gaz. Nous montrons que ceci est due à une saturation de plusieurs facteurs physiques, qui sont déjà présents naturellement dans les galaxies isolées à z=2 et sont donc comparativement peu accentués par les fusions. Il s’agit de la turbulence du gaz, des zones de champ de marée compressif et des flux de matières vers le noyau de la galaxie. Nous montrons aussi que les structures stellaires formées au sein des grumeaux de gaz sont préservées par la fusion : elles sont éjectées des disques et orbitent dans le halo de la galaxie résultante de la fusion, où elles peuvent devenir les progéniteurs de certains amas globulaires / We study the formation of stars and stellar clusters in gas-dominated galaxies. This term primarily refers to galaxies from the epoch of the peak of the cosmic star formation history, which occurred at z ~ 2, but also to their local analogues, the tidal dwarf galaxies.Firstly, using numerical simulations, we show that the massive galaxies at z = 2, which have a gas fraction of about 50%, form massive (10**7-8 solar masses) and gravitationally bound structures, which we call clumps thereafter. These clumps do not form in galaxies with a gas fraction below 25%. We then present an observational study of a local analogue of a z = 2 galactic clump, which is the tidal dwarf galaxy NGC 5291N. The analysis of emission lines show the presence of shocks on the outskirts of the object. Photometry of this galaxy’s stellar clusters show that the youngest clusters (< 10 million years) are significantly less massive than older clusters. This could be the sign of ongoing cluster mergers and/or of a strong star formation activity in this system about 500 million years ago).Secondly, we study how the gas fraction impacts the formation of stars and stellar clusters in galaxy mergers at z = 2. Using numerical simulations we show that these mergers only slightly increase the star and stellar cluster formation rate, compared to local galaxy mergers, which have a lower gas fraction. We show that this is due to the saturation of several physical quantities, which are already strong in isolated z=2 galaxies and are thus less enhanced by the merger. These factors are gas turbulence, compressive tides and nuclear gas inflows, We also show that the stellar structures formed in the gaseous clumps are preserved by the fusion: they are ejected from the disk and orbit in the halo of the remnant galaxy, where they may become the progenitors of some globular clusters
35

Star formation in LITTLE THINGS dwarf galaxies

Ficut-Vicas, Dana January 2015 (has links)
In this thesis we test and expand our current knowledge of Star Formation Laws (SF laws) in the extreme environment of dwarf irregular galaxies. We focus on the SF characteristics of our 18 galaxies sample, extending current investigations of the Schmidt-Kennicutt law to the low luminosity, low metallicity regime. The Hi data used in this project have been observed, calibrated and imaged according to the LITTLE THINGS Survey prescription to which I brought my own contribution as a member of the team. Apart from high resolution, VLA data in B, C and D array configurations, this project makes use of an extensive set of multi- wavelength data (H , FUV, 24 m, 3.6 m, V-band and K-band). Molecular gas in dwarfs is very difficult to observe, mainly because due to the low metallicity environment, we lose our only molecular tracer, the CO which becomes under luminous. Therefore the gas distribution is represented by Hi gas only. We create our Star Formation Rate (SFR) maps mainly based on FUV maps because our analysis shows that FUV is the SF tracer that allows us the most extensive sampling of the SFR surface density (SFRD) and Hi surface density relation. The main results of our study are: Whereas in spiral galaxies Bigiel et al. (2008) have found a one to one relation between star formation rate and molecular gas and no relation between the SFR and the neutral gas, in a small sample of dwarfs as well as in the outskirts of spiral galaxies Bigiel et al. (2010b) has found that SFRD does correlate with Hi surface density. We confirm the existence of the SFRD vs. Hi surface density relation in dwarf irregular galaxies and a linear fitting through all our data (all 18 galaxies combined) yields a power law relation ΣSFR ∝ Σ1.87±0.3/HI . We find that the interiors of Hi shells, at 400 pc scales, become resolved and show up in SFRD versus Hi surface density plots although within the shell interior we have SFRD values but no Hi surface density related to them. Thus, the points originating from those regions contribute significantly to the increase of the scatter in the plot. We show that by excluding those points the correlation between SFRD and Hi surface density improves between 10% and 20%. Eight of the 18 galaxies in our sample have Hi maxima higher than the 10M pc-2 value found by Bigiel et al. (2008) for spiral galaxies. Krumholz et al. (2011) predicted that the 10M pc-2 threshold is metallicity dependent in galaxies with sub-solar metallicity, however the theoretically predicted values for our galaxies only match the observed Hi maxima in one case (DDO168). We find that metallicity cannot be the only factor setting the Hi to H2 transition. In fact, we find evidence that the higher the interstellar radiation field (ISRF), the higher the Hi maximum is, hence we suggest that the ISRF should also be taken into consideration in predicting the Hi to H2 transition threshold. We find that even tighter than the SFRD vs. Hi surface density relation is the SFRD vs. V-band surface density relation. Unlike the SFRD vs. Hi surface density relation the SFRD vs. V-band surface density relation follows a power law and can be written as follows: ΣSFR ∝ (10^μv)^-0.43±0.03. The SFRD vs. V-band surface density relation suggests that the existing stars also play a role in the formation of the next generation of stars. Within our sample of dwarf galaxies the average pressure per resolution element and the SFRD are in a 1:1 linear relation: ΣSFR ∝ P_h^1.02±0.05. A similar relation has been found by Blitz & Rosolowsky (2006) for the low-pressure regimes of spiral galaxies. In conclusion we find that in the extreme environments of dwarf galaxies the metal deficiency and the lack of the classic SF stimulators (spiral arms, shear motions) do not impede the star forming process. In these galaxies, dust-shielding becomes predominantly self-shielding and there is plenty of Hi available to achieve this additional task. Existing stars assume the role of pressure enhancers, which in turn will stimulate SF without the need of spiral arms or shear motion.
36

Vertical Structure Of Disk Galaxies And Their Dark Matter Halos

Banerjee, Arunima 07 1900 (has links) (PDF)
The topic of this thesis is the study of the vertical structure of the disk galaxies and their dark matter halos through theoretical modeling and numerical calculations. The basic theoretical model of the galactic disk used involves gravitationally-coupled stars and gas under the force-field of a dark matter halo; the disk is rotationally-supported in the plane and pressure-supported perpendicular to the plane of the galaxy. The first part of the thesis involves evaluating the vertical structure of stars and gas in normal as well as dwarf spiral galaxies. The second part of the thesis deals with probing the dark matter halo density profiles of disk galaxies using both the observed rotation curve and the H i scale height data. Following is the layout of the thesis. Chapter 1 gives a general introduction to the topic of vertical structure of spiral galaxies and their dark matter halos, followed by a broad overview of the theoretical development of the topic and ends with highlighting the motivation and challenges met in this thesis. Chapters 2 & 3 deal with the vertical structure of stars and gas in galaxies, Chapters 4-6 focus on obtaining the dark matter halo density profiles of disk galaxies from the observed rotation curve and the H i scale height data whereas Chapter 7 is devoted to the summary of results and future research plans. Vertical structure of stars and gas in galaxies The vertical thickness of the stars and the gas, namely atomic hydrogen (H i) and molecular hydrogen (H2) in a spiral galaxy, is crucial in regulating the disk dynamics close to the mid-plane, especially in the inner galaxy. However, measuring it observationally is not in general practicable due to the limitations of astronomical observations, and often impossible as in the case of face-on galaxies. Therefore, it is imperative to develop a theoretical model of the galaxy which can predict the thickness of the disk components by using as input parameters the physical quantities, which are more observationally-amenable compared to the disk thickness. The vertical thickness of the disk components is determined by a trade-off between the upward kinetic pressure and the net downward gravitational pull of the galaxy. The fraction of the disk mass due to the stars is an order of magnitude higher than that of the gas in ordinary spiral galaxies, and therefore the gas contribution to the disk gravity is ignored in general. We have developed a multi-component model of gravitationally-coupled stars, HI and H2 subjected to the force-field of an external dark matter halo, and conclusively demonstrated the importance of the inclusion of gas gravity in explaining the steep vertical stellar distribution observed in galaxies. These apart, this model does not implicitly assume a flat rotation curve for the galaxy and therefore is applicable in general to obtain the thickness of stars and gas in dwarfs (with linearly rising rotation curves) as well as in ordinary spirals. In Chapter 2, we investigate the origin of the steep vertical stellar distribution in the Galactic disk. One of the direct fall outs of our above model of the galaxy, which incor¬porates the self-gravity of the gas unlike the earlier theoretical models, lies in explaining the long-standing puzzle of the steep vertical stellar density distribution of the disk galax¬ies near the mid-plane. Over the past two decades, observations revealed that the vertical density distribution of stars in galaxies near the mid-plane is substantially steeper than the sech2 function that is expected for a self-gravitating system of stars under isothermal ap¬proximation. However, the physical origin for this has not been explained so far. We have clearly demonstrated that the inclusion of the self-gravity of the gas in the dynamical model of the Galaxy solves the problem even under the purview of isothermal approximation for the disk components. Being a low dispersion component, the gas resides closer to the mid¬plane compared to the stars, and forms a thin, compact layer near the mid-plane, thereby strongly governing the local disk dynamics. This novel idea, highlighting the significance of gas gravity has produced substantial impact on the field and triggered research activities by other groups in related areas of disk dynamics. The strong effect of the gas gravity on the vertical density profile of the stellar disk indicates that it should also bear its imprint on the Milky way thick disk, as the epoch of its formation 109 years ago is marked by a value of gas fraction, almost an order of magnitude higher than its present day value. Interest-ingly, the findings of the upcoming Gaia mission can be harnessed to verify this theoretical prediction. It may also hold the clue as to the reason behind the absence of thick disk in superthin galaxies. In Chapter 3, we use the same model to theoretically determine the H i vertical scale heights in the dwarf galaxies: DDO 154, Ho II, IC 2574 & NGC 2366 for which most of the necessary input parameters are available from observations. We stress the fact that the observational determination of the gas thickness in these dwarf irregulars is not viable. Nevertheless, it is important to estimate it theoretically as it plays a crucial role in calculating the star-formation activities and other related phenomena. However, two vital aspects have to be taken care of while modeling these dwarf galaxies. Firstly, the mass fraction in gas in these galaxies is comparable to that of the stars, and hence the gas gravity cannot be ignored on any account unlike in the case of large spirals. Secondly, dwarf galaxies have a rising rotation curve over most of the disk unlike the flat rotation curves of ordinary spirals. Both these factors have been considered in developing our model of the dwarf galaxies. We find that three out of the four galaxies studied show a flaring of their H i disks with increasing radius, by a factor of a few within several disk scale lengths. The fourth galaxy (Ho II) has a thick H1 disk throughout. A comparison of the size distribution of H1 holes in the four sample galaxies reveals that of the 20 type 3 holes, all have radii that are in agreement with them being still fully contained within the gas layer. Probing the dark matter halo profiles of disk galaxies The next part of the thesis involves the dynamical study of the shapes and density profiles of galactic dark matter halos using observational constraints on our theoretical model of a spiral galaxy. The density distribution of the dark matter halo is generally modeled using the observed rotation curve of the spiral galaxies. The rotational velocity at any radius is determined by the radial component of the net gravitational force of the galaxy, which, however, is weakly dependent on the shape of the dark matter halo. Therefore, one cannot trace the dark matter halo shape by the observed rotation curve alone. The vertical thickness of the stars and gas, on the other hand, is strongly dependent on the flattening of the dark matter halo, and therefore the observed gas thickness can be used as a diagnostic to probe the halo shape. In this thesis, we have used the double constraints of the rotation curve and the H i thickness data to obtain the best-fit values of the core density, core radius and the vertical-to-planar axis ratio (or flattening) of the dark matter halos of our largest nearby galaxy Andromeda (or M31), a low-surface brightness (LSB) superthin galaxy UGC 7321 and to study the dark matter halo shape of our Galaxy. In Chapter 4, we study the dark matter halo of M31 or Andromeda, the largest nearby galaxy to the Milky Way. We find that M31 has a highly flattened isothermal dark matter halo with the vertical-to-horizontal axis ratio equal to 0.4, which interestingly lies at the most oblate end of the halo shapes found in cosmological simulations. This indicates that either M31 is a unusual galaxy, or the simulations need to include additional physics, such as the effect of the baryons, that can affect the shape of the halo. This is quite a remarkable result as it challenges the popular practice of assuming a spherical dark matter halo in the dynamical modeling of the galaxy In Chapter 5, we have applied this technique to the superthin galaxy UGC 7321. Su¬perthins are somewhat the “extreme” objects in the local Universe because of their high gas fraction and absence of a thick disk component. It is interesting to analyze their so-called extreme characteristics in the light of the physical mechanisms which determined them to understand better the properties of ordinary spirals. We find that UGC 7321 has a spher¬ical isothermal halo, with a core radius almost equal to the disk scale length. This reveals that the dark matter dominates the dynamics of this galaxy at all radii, including the inner parts of the galaxy. This is unlike the case for the large spiral galaxies, where the core radius is typically about 3-4 disk scale lengths. Interestingly, the best-fit halo core density and the core radius are consistent, with deviations of a few percent, with the dark matter fundamental plane correlations, which depict the systematic properties of the dark matter halo in late-type and dwarf spheroidal galaxies. This apart, a high value of the gas velocity dispersion is required to get a better fit to the H i scale height data, although the superthin nature of the stellar disk implies a dynamically cold dynamic galactic disk. However, it explains the low star-formation rates in these galaxies since the Toomre Q criterion (Q < 1) for instability is less likely to be satisfied, and hence the disk is liable to be more stable to star formation. In Chapter 6, we investigate the shape of the dark matter halo in the outer Galaxy. We find that the halo is prolate, with the vertical-to-planar axis ratio monotonically increasing to 2.0 at 24 kpc, or 8 radial disk scale lengths. The resulting prolate-shaped halo can explain several long-standing puzzles in galactic dynamics, for example, it permits long-lived warps thus explaining their ubiquitous nature. It also imposes novel constraints on the galaxy formation models. Finally, in Chapter 7, the thesis is concluded with a summary of the main results and a brief discussion of the scope for future work.
37

Star Formation and the Interstellar Medium in Nearby Tidal Streams (SAINTS): Spitzer Mid-Infrared Spectroscopy and Imaging of Intergalactic Star-Forming Objects

Higdon, S. J.U., Higdon, J. L., Smith, B. J., Hancock, M. 01 June 2014 (has links)
A spectroscopic analysis of 10 intergalactic star-forming objects (ISFOs) and a photometric analysis of 67 ISFOs in a sample of 14 interacting systems is presented. The majority of the ISFOs have relative polycyclic aromatic hydrocarbon (PAH) band strengths similar to those of nearby spiral and starburst galaxies. In contrast to what is observed in blue compact dwarfs (BCDs) and local giant H II regions in the Milky Way (NGC 3603) and the Magellanic Clouds (30 Doradus and N 66), the relative PAH band strengths in ISFOs correspond to models with a significant PAH ion fraction (<50%) and bright emission from large PAHs (∼100 carbon atoms). The [Ne III]/[Ne II] and [S IV]/[S III] line flux ratios indicate moderate levels of excitation with an interstellar radiation field that is harder than the majority of the Spitzer Infrared Nearby Galaxies Survey and starburst galaxies, but softer than BCDs and local giant H II regions. The ISFO neon line flux ratios are consistent with a burst of star formation ∼6 million years ago. Most of the ISFOs have ∼106 M ⊙ of warm H2 with a likely origin in photo-dissociation regions (PDRs). Infrared Array Camera photometry shows the ISFOs to be bright at 8 μm, with one-third having [4.5]-[8.0] > 3.7, i.e., enhanced non-stellar emission, most likely due to PAHs, relative to normal spirals, dwarf irregulars, and BCD galaxies. The relative strength of the 8 μm emission compared to that at 3.6 μm or 24 μm separates ISFOs from dwarf galaxies in Spitzer two-color diagrams. The infrared power in two-thirds of the ISFOs is dominated by emission from grains in a diffuse interstellar medium. One in six ISFOs have significant emission from PDRs, contributing ∼30%-60% of the total power. ISFOs are young knots of intense star formation.
38

Testing the multi-epoch luminosity function of asymptotic giant branch stars in the Small Magellanic Cloud with VISTA

Brogan, Róisín O'Rourke January 2020 (has links)
The physics pertaining to the asymptotic giant branch (AGB) phase of stellar evolution has been studied for many years. However, the mechanics behind many characteristics displayed at this stage are still not fully understood. As a member of the Long Period Variable class of stars, AGB stars are invaluable in creating three-dimensional maps of the Milky Way, the Magellanic System and other galaxies with resolved stellar populations. Variable stars can be used to determine radial distances from Earth using their periodic luminosity variations. As this type of star has unknown qualities, models of AGB populations need to be calibrated with observed data. Previous research has derived a best-fitting model using the TRILEGAL code (a TRIdimensional modeL of thE GALaxy). This model was calibrated against single-epoch luminosity functions (LFs) calculated from resolved stellar populations in the Small Magellanic Cloud (SMC). With multi-epoch data now available from the VISTA survey of the Magellanic Clouds (VMC), this best-fitting model can now be compared with the LFs as they vary with time. Firstly, statistical tests are completed to measure the extent of the LF variation between epochs and from the mean LF for both the full VMC AGB catalogue and for the oxygen-rich, carbon-rich and extreme AGB classes. Statistical tests are then performed to measure the similarity between the LFs from different epochs and the simulated LFs, again for the entire sample and the three classes. This investigation shows that, while the current best-fitting model is a good approximation of many individual epochs’ AGB LFs in the SMC to within 3σ, inclusion of multi-epoch data would make for a more robust analysis. In order to do this, it would be desirable to have more epochs with deeper and regular observations that could cover full lightcurves of some of the sources. There also seems to be a statistical difference between the inner and outer areas of the SMC, perhaps due to tidal disruptions. It would be interesting to see the results of a similar study using the LMC, which is less affected by the gravitational influence of its smaller companion. / <p>This thesis was written under the supervision of Maria-Rosa Cioni at the Leibniz Institute for Astrophysics in Potsdam. The presentation was held online due to the COVID-19 pandemic.</p>
39

Study of the Galactic Center and dark matter search with H.E.S.S. / Etude du Centre Galactique et recherche de matière noire avec H.E.S.S.

Rinchiuso, Lucia 03 July 2019 (has links)
L’expérience H.E.S.S. (High Energy Spectroscopic System) composée de cinq télescopes Tcherenkov observe le ciel en rayons gamma au-delà d'une centaine de GeV jusqu'à plusieurs dizaines de TeV. Les rayons gamma sont produits par des phénomènes non-thermiques parmi les plus violents dans l'univers au voisinage d'objets astrophysique comme les pulsars, supernovae ou trous noirs, mais pourraient être également produits par l'annihilation de particules de matière noire.De nombreuses sondes cosmologiques et astrophysiques suggèrent que 85% de la matière dans l'Univers est d'origine inconnue. Cette matière appelée matière noire, de nature non baryonique, serait constituée de particules non encore découvertes dont les candidats privilégiés seraient des particules massives interagissant faiblement (WIMPs) avec la matière ordinaire, particules prédites au-delà du Modèle Standard de la physique des particules.Des particules de matière noire peuvent s'annihiler en particules du Modèle Standard dans les régions denses de l'Univers. Parmi les produits d'annihilations se trouvent les photons dont la détection à hautes énergies par des télescopes au sol à effet Tcherenkov pourrait apporter des informations uniques sur la nature de la matière noire.H.E.S.S. observe des régions du ciel dense en matière noire comme le Centre Galactique et des galaxies naines satellites de la Voie Lactée.Une interprétation d'un excès de rayons gamma détecté au Centre Galactique par H.E.S.S. en termes d’accélération de protons par une population de pulsars millisecondes est présenté.10 ans d'observations du Centre Galactique avec le réseau H.E.S.S. I de quatre télescopes, cinq ans de prise de données vers la région du Centre Galactique avec le réseau complet H.E.S.S. II, et un jeu de deux ans de données vers des galaxies naines découvertes récemment sont analysés. Les recherches de signaux d'annihilation de matière noire vers ces cibles ont produit les limites plus fortes à présent sur la section efficace d'annihilation de matière noire dans la plage en masse du TeV. Le potentiel de détection de matière noire avec le futur réseau de télescopes CTA (Cherenkov Telescope Array) vers la région central du halo Galactique est étudiés. / The H.E.S.S. (High Energy Spectroscopic System) experiment is an array of five Cherenkov telescopes that observe the sky in gamma-rays from about 100 GeV up to several ten TeV.Gamma rays are produced in violent non-thermal phenomena in the Universe in the neighborhood of pulsars, supernovae, black holes, ..., and could also be produced by the annihilation of dark matter particles.Numerous cosmological and astrophysical probes suggest that 85% of the total matter budget in the Universe is of unknown origin. This component of matter known as dark matter is non baryonic and could consist of yet undiscovered particles which privileged candidates are arguably massive particles with electroweak couplings with ordinary matter (WIMPs).Dark matter particles may annihilate into Standard Model particles in dense regions of the Universe. Among the annihilation products are photons which detection at high energy with ground-based Cherenkov telescopes could bring unique information on the nature of the dark matter.H.E.S.S. observes dark-matter-dense regions of the sky such as the Galactic Center and dwarf galaxy satellites of the Milky Way. A study on the interpretation of an excess of gamma-rays detected by H.E.S.S. at the Galactic Center in terms of acceleration of protons by a population of unresolved millisecond pulsars is performed.10 years of observations of the Galactic Center with the four-telescope H.E.S.S.-I array, five years of data taking towards the Galactic Center region with the full H.E.S.S.-II array and a two-years dataset towards newly discovered dwarf spheroidal galaxies are analyzed. The search for dark matter annihilation signals towards these targets provided the strongest limits so far on dark matter annihilation cross section in gamma rays of TeV energies. The potential of dark matter detection with the upcoming Cherenkov Telescope Array (CTA) towards the inner Galactic halo are studied. They may annihilate into Standard Model particles in dense regions of the Universe. Among the annihilation products are high energy photons. The detection of these photons with ground-based Cherenkov telescopes may reveal the nature of the dark matter. H.E.S.S. have observed some dark-matter-dense regions of the sky likethe Galactic Center and dwarf galaxies satellites of the Milky Way. In this work 10 years of observations of the Galactic Center with the four-telescopes H.E.S.S.-I array, five years of data taking towards the Galactic Center region with the full H.E.S.S.-II array and a two-years dataset towards newly discovered dwarf spheroidal galaxies are analyzed. The searches for dark matter annihilation signals towards these targets produced the strongest limits so far on dark matter annihilation cross section in gamma rays of TeV energies.Perspectives of dark matter detection with the future array CTA (Cherenkov Telescope Array) towards the inner Galactic halo are also discussed. A study on the interpretation of an excess of gamma-rays detected by H.E.S.S. at the Galactic Center in terms of acceleration of protons by a population of unresolved millisecond pulsars complements the dark matter searches.
40

Modified Newtonian dynamics at all astrophysical scales

Angus, Garry W. January 2008 (has links)
In this thesis I test the modified Newtonian dynamics as an alternative to the cold dark matter hypothesis. In the Milky Way, I show that the dynamics of the dwarf galaxies are well described by the paradigm and I confirm its distant low surface brightness globular clusters provide a strong test, for which I make predictions. Through analysis of a sample of 26 X-ray bright galaxy groups and clusters I demonstrate that the three active neutrinos and their anti-particles are insufficient to reconcile modified Newtonian dynamics with the observed temperatures of the X-ray emitting gas, nor with weak-lensing measurements, in particular for the bullet cluster. To this end, I propose an 11eV sterile neutrino to serendipitously resolve the residual mass problem in X-ray bright groups and clusters, as well as matching the angular power spectrum of the Cosmic Microwave Background. With this in mind, I show that the large collision velocity of the bullet cluster and the high number of colliding clusters is more naturally reproduced in MOND than in standard dynamics.

Page generated in 0.0825 seconds