• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermomechanical and Vibration Analysis of Stiffened Unitized Structures and Threaded Fasteners

Devarajan, Balakrishnan 01 February 2019 (has links)
This dissertation discusses the thermomechanical analyses performed on threaded fasteners and curvilinearly stiffened composite panels with internal cutouts. The former problem was analyzed using a global/local approach using the commercial finite element software ANSYS while a fully functional code using isogeometric analysis was developed from scratch for the latter. For the threaded fasteners, a global simplified 3D model is built to evaluate the deformation of the structure. A second local model reproducing accurately the threads of the fasteners is used for the accurate assessment of the stresses in the vicinity of the fasteners. The isogeometric analysis code, capable of performing static, buckling and vibration analysis on stiffened composite plates with cutouts using single patch, multiple patches and level set methods is then discussed. A novel way to achieve displacement compatibility between the panel and stiffeners interfaces is introduced. An easy way of modeling plates with complicated cutouts by using edge curves and generating a ruled NURBS surface between them is described. Influence on the critical thermal buckling load and the fundamental mode of vibration due to the presence of circular, elliptical and complicated cutouts is also investigated. Results of parametric studies are presented which show the influence of ply orientation, size and orientation of the cutout, and the position and profile of the curvilinear stiffener. The numerical examples show high reliability and efficiency when compared with other published solutions and those obtained using ABAQUS, a commercial software. / PHD / Aircraft in flight are subjected to different loads due to maneuvers and gust; there external forces cause internal loads and depend on the location of the panel in the aircraft. The internal loads, may result in the buckling of the panel. Hence, there is a need for studying structural efficiency and develop strong and stiff lightweight structures. Stiffened composite panels is a technology capable of addressing these needs. However, when used in space vehicles moving at hypersonic speeds, such structures experience significant temperature rise in a very short time resulting from the aerodynamic heating due to friction between the vehicle surface and the atmosphere. Such phenomena is more prominent during reentry and launch processes. Hence, it is really important to consider thermal effects while designing and analyzing such structures. Composite stiffened panels have many advantages like small manufacturing cost, high stability, great energy absorption, superior damage tolerance etc. One of the main failure modes for stiffened composite panels is thermal buckling. An extensive literature review on thermal buckling of stiffened composite panels was conducted in this dissertation. Thermal buckling and vibration analysis as well as a parametric study of a stiffened composite panel with internal cutouts was conducted, and verified using ABAQUS, a Finite Element Software.

Page generated in 0.0962 seconds