1 |
Control of carbon dioxide capture from biomass CHP plants : Designing a suitable control system to realize the flexible operation of the CO2 capture systemRout, Tanmmay January 2023 (has links)
This degree project studies the integration of carbon capture system into biomass fired combined heat and power (bio-CHP) plants. The key disturbances from bio-CHP plants include flue gas flow rate, carbon dioxide (CO2) concentration and available heat for the reboiler because the use of versatile biomass and the dynamic operation of CHP plants results in large fluctuations in the properties of flue gas and the heat input for CO2 capture. To clearly understand the impacts of these disturbances on the performance of CO2 capture, a dynamic CO2 capture model is developed in Aspen Plus Dynamics by using monoethanolamine (MEA) based chemical absorption. Proportional-Integral (PI) feedback controllers are then implemented to further study and compare the performance of the CO2 capture process under different control strategies, the performance with general control settings and fine-tuned controllers are obtained and compared, including both the control performance and system performance. The control performance includes the maximum deviation and settling time, which could reflect only the performance of the controllers. The system performance includes Captured CO2, reboiler duty and Energy penalty per unit CO2 captured, which could reflect CO2 capture system performance. An equilibrium stage steady state model is first developed for the key components in the CO2 capture plant in Aspen Plus, consisting of the absorber, the stripper, and lean-rich heat exchanger. By sizing the components and employing the pressure driven mode, the steady state model is enabled to be a dynamic model. The disturbances about flue gas and reboiler heat are taken from a real bio-CHP plant in Sweden. Considering the higher flue gas flowrate, the model has been scaled up to meet the requirement of this bio-CHP plant. The addition of controllers are done for the flexible operation of the CO2 capture system and the controlled variables considered in this study are the percentage of CO2 absorbed in the absorber column, reboiler temperature and rich solvent flow in the stripper column. The results show the effects of fluctuations in the key influencing factors on the control performance and the system performance . The fine-tuned controller implemented system showcases better performance when the quantity of CO2 captured is compared with that of the system in the absence of controllers, where a 1.1% increase in the amount of captured CO2 is observed when the flue gas flow rate is increased by 30%. The system also maintains a 1.8% higher capture rate when controllers are implemented. This showcases better system performance when controllers are implemented in the system. To further analyse the effects of control strategies two different control strategies are compared where controllers with general settings are compared to the controllers which are fine-tuning achieved by implementing tuning parameters which were obtained through Internal Model control (IMC) based on the system requirements. The fine tuning of the controllers results in improved system performance where the amount of captured CO2 increases by 1.4% when the reboiler duty is increased by 30% and a 1.7% decrease in the energy penalty per unit CO2 captured. Additionally, the results show that the settling time and maximum deviation are different for the two controllers where the controller which underwent fine tuning maintained the steady set point whereas the controller with general controller tuning showcases deviation before it attained stability. Therefore, the fine-tuned controller is more efficient to enable the flexible operation of CO2 capture when facing disturbance. It is studied that the tuning parameters implemented in the controllers affect the transient operation of the plant and improved the dynamic performance of the capture system. The tuned controllers offered more stability to the capture system while attaining their respective set points in a shorter time frame. It is also found that there exists a big difference between the system’s performance without controllers and that with finely tuned controllers. The difference in captured CO2 amount is approximately 26 ton/h when flue gas flow rate increases by 30%. The percentage difference is 1.1%, 7.7% and 5.9% for Captured CO2, reboiler duty and Energy penalty per unit CO2 captured respectively. In conclusion the control of the transient operation of the CO2 capture system needs the control system implemented and requires fine tuning parameters to achieve the desirable performance.
|
Page generated in 0.1411 seconds