• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Dynamic and Static Mechanical Behavior of Polyetherimide

Mutter, Nathan J. 01 January 2012 (has links)
Polymers are increasingly being used in engineering designs due to their favorable mechanical properties such as high specific strength, corrosive resistance, manufacturing flexibility. The understanding of the mechanical behavior of these polymers under both static and dynamic loading is critical for their optimal implementation in engineering applications. One such polymer utilized in a wide variety of applications from medical instrumentation to munitions is Polyetherimide, referred to as Ultem. This thesis characterizes both the static and dynamic mechanical behavior of Ultem 1000 through experimental methods and numerical simulations. Standard compression experiments were conducted on and MTS test frame to characterize the elastic-plastic behavior of Ultem 1000 under quasi-static conditions. The dynamic response of the material was investigated at very high strain rates using a custom built miniaturized Kolsky bar apparatus. The smaller Kolsky bar configuration was chosen over the conventional Kolsky device to increase the maximum capable strain rates and to reduce common experimental problems such as wave dispersion, friction, and stress equilibrium. Since a universal test standard for this apparatus is not available, the details of the design, construction, and experimental procedures of this device are provided. The results of the high strain rate testing revealed a bilinear relationship between the material yield stress and strain rate. This relationship was modeled using the Ree-Eyring two stage activation process equation.

Page generated in 0.0816 seconds