• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bayesian Approach to Dynamically Controlling Data Collection in P300 Spellers

Throckmorton, Chandra S., Colwell, Kenneth A., Ryan, David B., Sellers, Eric W., Collins, Leslie M. 22 May 2013 (has links)
P300 spellers provide a noninvasive method of communication for people who may not be able to use other communication aids due to severe neuromuscular disabilities. However, P300 spellers rely on event-related potentials (ERPs) which often have low signal-to-noise ratios (SNRs). In order to improve detection of the ERPs, P300 spellers typically collect multiple measurements of the electroencephalography (EEG) response for each character. The amount of collected data can affect both the accuracy and the communication rate of the speller system. The goal of the present study was to develop an algorithm that would automatically determine the necessary amount of data to collect during operation. Dynamic data collection was controlled by a threshold on the probabilities that each possible character was the target character, and these probabilities were continually updated with each additional measurement. This Bayesian technique differs from other dynamic data collection techniques by relying on a participant-independent, probability-based metric as the stopping criterion. The accuracy and communication rate for dynamic and static data collection in P300 spellers were compared for 26 users. Dynamic data collection resulted in a significant increase in accuracy and communication rate.
2

Bayesian Approach to Dynamically Controlling Data Collection in P300 Spellers

Throckmorton, Chandra S., Colwell, Kenneth A., Ryan, David B., Sellers, Eric W., Collins, Leslie M. 22 May 2013 (has links)
P300 spellers provide a noninvasive method of communication for people who may not be able to use other communication aids due to severe neuromuscular disabilities. However, P300 spellers rely on event-related potentials (ERPs) which often have low signal-to-noise ratios (SNRs). In order to improve detection of the ERPs, P300 spellers typically collect multiple measurements of the electroencephalography (EEG) response for each character. The amount of collected data can affect both the accuracy and the communication rate of the speller system. The goal of the present study was to develop an algorithm that would automatically determine the necessary amount of data to collect during operation. Dynamic data collection was controlled by a threshold on the probabilities that each possible character was the target character, and these probabilities were continually updated with each additional measurement. This Bayesian technique differs from other dynamic data collection techniques by relying on a participant-independent, probability-based metric as the stopping criterion. The accuracy and communication rate for dynamic and static data collection in P300 spellers were compared for 26 users. Dynamic data collection resulted in a significant increase in accuracy and communication rate.
3

Increasing BCI Communication Rates With Dynamic Stopping Towards More Practical Use: An ALS Study

Mainsah, B. O., Collins, L. M., Colwell, K. A., Sellers, E. W., Ryan, D. B., Caves, K., Throckmorton, C. S. 01 February 2015 (has links)
Objective. The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user's EEG data. We further enhanced the algorithm by incorporating information about the user's language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main results. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. Significance. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.

Page generated in 0.0642 seconds