• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Function of Nck-1 adaptor protein as modulator of elF2alpha phosphorylation by specific elF2alpha kinases and PKR activity

Cardin, Eric. January 2008 (has links)
Phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2alpha) on Serine 51 (Ser51) is an early event associated with downregulation of protein synthesis at the level of translation and constitutes a potent mechanism to overcome various stress conditions. In mammals, four eIF2alpha-kinases PERK, PKR, HRI and GCN2, activated following specific stresses, have been involved in this process. Our laboratory has previously demonstrated that the adaptor protein Nck, composed only of Src homology domains and classically implicated in cell signaling by activated plasma membrane receptor tyrosine kinases, modulates translation through its interaction with the beta-subunit of the eukaryotic initiation factor 2 (eIF2beta). Moreover, we reported that Nck-1 overexpression antagonizes the inhibition of translation in endoplasmic reticulum stress condition and prevents the PERK-mediated phosphorylation of the alpha-subunit of eIF2 on Ser51. In this thesis, I demonstrate that the adaptor protein Nck-1 modulates eIF2alpha-kinase-mediated eIF2alphaSer51 phosphorylation in a specific manner. More particularly, I show that Nck-1 overexpression reduces eIF2alpha phosphorylation in conditions activating PKR or HRI as described previously for PERK. In contrast, I observe that overexpression of Nck-1 in mammalian cells fails to attenuate eIF2alphaSer51 phosphorylation in response to amino acid starvation, a stress condition activating GCN2. I further confirm this observation by showing that Nck-1 fails to alter eIF2alphaSer51 phosphorylation in Saccharomyces cerevisiae, for which the sole eIF2alpha-kinase is GCN2. In addition, I report that Nck-1 reduces PKR activation in response to dsRNA. I also find that Nck-1 reduces dsRNA-induced activation of p38 MAPK, a PKR-downstream substrate, and cell death. Finally, I show that Nck-1 interacts exclusively with the inactivated form of PKR in a Src homology domain independent manner. All together these data uncover the existence of a novel mechanism regulating phosphorylation of eIF2alphaSer51 under various stress conditions and identifies Nck-1 as a modulator of the tumor suppressor and antiviral protein kinase PKR.
2

Function of Nck-1 adaptor protein as modulator of elF2alpha phosphorylation by specific elF2alpha kinases and PKR activity

Cardin, Eric. January 2008 (has links)
No description available.

Page generated in 0.0456 seconds