• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Best Effort MPI/RT as an Alternative to MPI: Design and Performance Comparison

Angadi, Raghavendra 13 December 2002 (has links)
The Real-Time Message Passing Interface (MPI/RT) is an emerging real-time communications middleware standard for distributed real-time applications. The Message Passing Interface (MPI) is the de facto standard for high performance parallel application development. In this thesis, we describe how MPI/RT with best effort quality of service can be used as an alternative for MPI. Mercury Computer Systems' RACE embedded parallel computer is used as the platform for comparison of design and performance of these two standards. The main advantages MPI/RT has over MPI are its explicit support for communication channels and its emphasis on early binding. Design and implementation of best effort MPI/RT on Mercury is described and its performance is compared with MPI in order to illustrate how MPI/RT features allow implementations to exploit the underlying platform more optimally. The results for the benchmarks show that MPI/RT outperforms MPI in almost all cases examined.
2

Overlapping of Communication and Computation and Early Binding: Fundamental Mechanisms for Improving Parallel Performance on Clusters of Workstations

Dimitrov, Rossen Petkov 12 May 2001 (has links)
This study considers software techniques for improving performance on clusters of workstations and approaches for designing message-passing middleware that facilitate scalable, parallel processing. Early binding and overlapping of communication and computation are identified as fundamental approaches for improving parallel performance and scalability on clusters. Currently, cluster computers using the Message-Passing Interface for interprocess communication are the predominant choice for building high-performance computing facilities, which makes the findings of this work relevant to a wide audience from the areas of high-performance computing and parallel processing. The performance-enhancing techniques studied in this work are presently underutilized in practice because of the lack of adequate support by existing message-passing libraries and are also rarely considered by parallel algorithm designers. Furthermore, commonly accepted methods for performance analysis and evaluation of parallel systems omit these techniques and focus primarily on more obvious communication characteristics such as latency and bandwidth. This study provides a theoretical framework for describing early binding and overlapping of communication and computation in models for parallel programming. This framework defines four new performance metrics that facilitate new approaches for performance analysis of parallel systems and algorithms. This dissertation provides experimental data that validate the correctness and accuracy of the performance analysis based on the new framework. The theoretical results of this performance analysis can be used by designers of parallel system and application software for assessing the quality of their implementations and for predicting the effective performance benefits of early binding and overlapping. This work presents MPI/Pro, a new MPI implementation that is specifically optimized for clusters of workstations interconnected with high-speed networks. This MPI implementation emphasizes features such as persistent communication, asynchronous processing, low processor overhead, and independent message progress. These features are identified as critical for delivering maximum performance to applications. The experimental section of this dissertation demonstrates the capability of MPI/Pro to facilitate software techniques that result in significant application performance improvements. Specific demonstrations with Virtual Interface Architecture and TCP/IP over Ethernet are offered.

Page generated in 0.0812 seconds