• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 12
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • 1
  • Tagged with
  • 46
  • 46
  • 46
  • 46
  • 25
  • 25
  • 25
  • 25
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The hyperspectral determination of Sphagnum water content in a bog

Lalonde, Mark January 2014 (has links)
No description available.
12

Errors in rain mearurement by radar : effect of variability of drop size distributions

Lee, Gyu Won January 2003 (has links)
No description available.
13

A study of the effects of cadaveric decomposition on hyperspectral signatures of soil and vegetation

Herzog, Carrie January 2014 (has links)
No description available.
14

Suivi des changements des utilisations/occupations du sol en milieu urbain par imagerie satellitale de résolution spatiale moyenne : le cas de la région métropolitaine de Montréal

Lang, Feng Mei 05 1900 (has links)
De nos jours les cartes d’utilisation/occupation du sol (USOS) à une échelle régionale sont habituellement générées à partir d’images satellitales de résolution modérée (entre 10 m et 30 m). Le National Land Cover Database aux États-Unis et le programme CORINE (Coordination of information on the environment) Land Cover en Europe, tous deux fondés sur les images LANDSAT, en sont des exemples représentatifs. Cependant ces cartes deviennent rapidement obsolètes, spécialement en environnement dynamique comme les megacités et les territoires métropolitains. Pour nombre d’applications, une mise à jour de ces cartes sur une base annuelle est requise. Depuis 2007, le USGS donne accès gratuitement à des images LANDSAT ortho-rectifiées. Des images archivées (depuis 1984) et des images acquises récemment sont disponibles. Sans aucun doute, une telle disponibilité d’images stimulera la recherche sur des méthodes et techniques rapides et efficaces pour un monitoring continue des changements des USOS à partir d’images à résolution moyenne. Cette recherche visait à évaluer le potentiel de telles images satellitales de résolution moyenne pour obtenir de l’information sur les changements des USOS à une échelle régionale dans le cas de la Communauté Métropolitaine de Montréal (CMM), une métropole nord-américaine typique. Les études précédentes ont démontré que les résultats de détection automatique des changements dépendent de plusieurs facteurs tels : 1) les caractéristiques des images (résolution spatiale, bandes spectrales, etc.); 2) la méthode même utilisée pour la détection automatique des changements; et 3) la complexité du milieu étudié. Dans le cas du milieu étudié, à l’exception du centre-ville et des artères commerciales, les utilisations du sol (industriel, commercial, résidentiel, etc.) sont bien délimitées. Ainsi cette étude s’est concentrée aux autres facteurs pouvant affecter les résultats, nommément, les caractéristiques des images et les méthodes de détection des changements. Nous avons utilisé des images TM/ETM+ de LANDSAT à 30 m de résolution spatiale et avec six bandes spectrales ainsi que des images VNIR-ASTER à 15 m de résolution spatiale et avec trois bandes spectrales afin d’évaluer l’impact des caractéristiques des images sur les résultats de détection des changements. En ce qui a trait à la méthode de détection des changements, nous avons décidé de comparer deux types de techniques automatiques : (1) techniques fournissant des informations principalement sur la localisation des changements et (2)techniques fournissant des informations à la fois sur la localisation des changements et sur les types de changement (classes « de-à »). Les principales conclusions de cette recherche sont les suivantes : Les techniques de détection de changement telles les différences d’image ou l’analyse des vecteurs de changements appliqués aux images multi-temporelles LANDSAT fournissent une image exacte des lieux où un changement est survenu d’une façon rapide et efficace. Elles peuvent donc être intégrées dans un système de monitoring continu à des fins d’évaluation rapide du volume des changements. Les cartes des changements peuvent aussi servir de guide pour l’acquisition d’images de haute résolution spatiale si l’identification détaillée du type de changement est nécessaire. Les techniques de détection de changement telles l’analyse en composantes principales et la comparaison post-classification appliquées aux images multi-temporelles LANDSAT fournissent une image relativement exacte de classes “de-à” mais à un niveau thématique très général (par exemple, bâti à espace vert et vice-versa, boisés à sol nu et vice-versa, etc.). Les images ASTER-VNIR avec une meilleure résolution spatiale mais avec moins de bandes spectrales que LANDSAT n’offrent pas un niveau thématique plus détaillé (par exemple, boisés à espace commercial ou industriel). Les résultats indiquent que la recherche future sur la détection des changements en milieu urbain devrait se concentrer aux changements du couvert végétal puisque les images à résolution moyenne sont très sensibles aux changements de ce type de couvert. Les cartes indiquant la localisation et le type des changements du couvert végétal sont en soi très utiles pour des applications comme le monitoring environnemental ou l’hydrologie urbaine. Elles peuvent aussi servir comme des indicateurs des changements de l’utilisation du sol. De techniques telles l’analyse des vecteurs de changement ou les indices de végétation son employées à cette fin. / Nowadays land use/land cover maps at regional scale are commonly generated with satellite data of medium spatial resolution (between 10 m and 30m). The National Land Cover Database (NLCD) in the United States and the Coordination of Information on the Environment (CORINE) Land Cover program in Europe, both based on LANDSAT images, are two typical examples. However, these maps become rapidly obsolete, especially in highly dynamic areas such as mega cities and metropolitan areas. In many applications, such as to monitor the water quality affected by the Land use/Land cover (LULC) change, the spread of invasive species, policy making for city managers, annual updating of LULC maps is required. Since 2007, the USGS offers access to ortho-rectified LANDSAT imagery free of charge. Both archived (since 1984) and recently acquired images are available. Without doubt, such data availability will stimulate the research on fast and cost effective methods and techniques for “continuous” regional land cover/use map updating using medium resolution satellite imagery. The objective of this research was to evaluate the potential of such medium resolution satellite imagery for providing information on changes useful for the continuous updating of LULC maps at a regional scale in the case of the Montreal Metropolitan Community (MMC) area, a typical North American metropolis. Previous studies have demonstrated that many factors could affect the results of automatic change detection such as: (1) the characteristics of the images (spatial resolution, spectral bands, etc.); (2) the method itself used to automatically detect changes; and (3) the complexity of the landscape. In the study site except for the Central Business District (CBD) and some commercial streets, land uses (industrial, commercial, residential, etc.) are well delimited. Thus this study was focused on the other factors affecting change detection results, namely, the characteristics of the images and the method of change detection. We used 6 spectral bands of LANDSAT TM/ETM+ with 30 m spatial resolution and 3 spectral bands of ASTER-VNIR with 15 m spatial resolution to evaluate the impact of image characteristics on change detection. Concerning the change detection method, we decided to compare two types of automatic techniques: (1) techniques providing information principally on the location of changed areas,and (2) techniques providing information on both the location of changed areas and the type of changes ("from-to" classes). The main conclusions of this research are as follows: Change detection techniques such as image differencing or change vector analysis applied to LANDSAT multi-temporal imagery provide an accurate picture of changed areas in a fast and efficient manner. They can thus be integrated in a continuous monitoring system for a rapid evaluation of the volume of changes. The produced maps could be helpful to guide the acquisition of high spatial resolution imagery if a detailed identification of the type of changes is required. Change detection techniques such as principal component analysis and post-classification comparison applied to LANDSAT multi-temporal imagery could provide a relatively accurate picture of “from-to” classes but at a very general thematic level (for example, built-up to green space and vice-versa, forest lands to bare soil and vice-versa, etc.). ASTER images with better spatial resolution but with less spectral bands than LANDSAT images do not provide more detailed thematic information (for example forest land to commercial or industrial areas). The results indicate that future research should be focused on the detection of changes in the vegetation cover as medium resolution imagery is highly sensitive to this type of surface cover. Maps indicating the location and the type of changes in vegetation cover are in itself very useful for various applications, such as environmental monitoring or urban hydrology, and can be used as indicators on land use changes. Techniques such as change vector analysis or vegetation indices could be used to this end.
15

Suivi des changements des utilisations/occupations du sol en milieu urbain par imagerie satellitale de résolution spatiale moyenne : le cas de la région métropolitaine de Montréal

Lang, Feng Mei 05 1900 (has links)
De nos jours les cartes d’utilisation/occupation du sol (USOS) à une échelle régionale sont habituellement générées à partir d’images satellitales de résolution modérée (entre 10 m et 30 m). Le National Land Cover Database aux États-Unis et le programme CORINE (Coordination of information on the environment) Land Cover en Europe, tous deux fondés sur les images LANDSAT, en sont des exemples représentatifs. Cependant ces cartes deviennent rapidement obsolètes, spécialement en environnement dynamique comme les megacités et les territoires métropolitains. Pour nombre d’applications, une mise à jour de ces cartes sur une base annuelle est requise. Depuis 2007, le USGS donne accès gratuitement à des images LANDSAT ortho-rectifiées. Des images archivées (depuis 1984) et des images acquises récemment sont disponibles. Sans aucun doute, une telle disponibilité d’images stimulera la recherche sur des méthodes et techniques rapides et efficaces pour un monitoring continue des changements des USOS à partir d’images à résolution moyenne. Cette recherche visait à évaluer le potentiel de telles images satellitales de résolution moyenne pour obtenir de l’information sur les changements des USOS à une échelle régionale dans le cas de la Communauté Métropolitaine de Montréal (CMM), une métropole nord-américaine typique. Les études précédentes ont démontré que les résultats de détection automatique des changements dépendent de plusieurs facteurs tels : 1) les caractéristiques des images (résolution spatiale, bandes spectrales, etc.); 2) la méthode même utilisée pour la détection automatique des changements; et 3) la complexité du milieu étudié. Dans le cas du milieu étudié, à l’exception du centre-ville et des artères commerciales, les utilisations du sol (industriel, commercial, résidentiel, etc.) sont bien délimitées. Ainsi cette étude s’est concentrée aux autres facteurs pouvant affecter les résultats, nommément, les caractéristiques des images et les méthodes de détection des changements. Nous avons utilisé des images TM/ETM+ de LANDSAT à 30 m de résolution spatiale et avec six bandes spectrales ainsi que des images VNIR-ASTER à 15 m de résolution spatiale et avec trois bandes spectrales afin d’évaluer l’impact des caractéristiques des images sur les résultats de détection des changements. En ce qui a trait à la méthode de détection des changements, nous avons décidé de comparer deux types de techniques automatiques : (1) techniques fournissant des informations principalement sur la localisation des changements et (2)techniques fournissant des informations à la fois sur la localisation des changements et sur les types de changement (classes « de-à »). Les principales conclusions de cette recherche sont les suivantes : Les techniques de détection de changement telles les différences d’image ou l’analyse des vecteurs de changements appliqués aux images multi-temporelles LANDSAT fournissent une image exacte des lieux où un changement est survenu d’une façon rapide et efficace. Elles peuvent donc être intégrées dans un système de monitoring continu à des fins d’évaluation rapide du volume des changements. Les cartes des changements peuvent aussi servir de guide pour l’acquisition d’images de haute résolution spatiale si l’identification détaillée du type de changement est nécessaire. Les techniques de détection de changement telles l’analyse en composantes principales et la comparaison post-classification appliquées aux images multi-temporelles LANDSAT fournissent une image relativement exacte de classes “de-à” mais à un niveau thématique très général (par exemple, bâti à espace vert et vice-versa, boisés à sol nu et vice-versa, etc.). Les images ASTER-VNIR avec une meilleure résolution spatiale mais avec moins de bandes spectrales que LANDSAT n’offrent pas un niveau thématique plus détaillé (par exemple, boisés à espace commercial ou industriel). Les résultats indiquent que la recherche future sur la détection des changements en milieu urbain devrait se concentrer aux changements du couvert végétal puisque les images à résolution moyenne sont très sensibles aux changements de ce type de couvert. Les cartes indiquant la localisation et le type des changements du couvert végétal sont en soi très utiles pour des applications comme le monitoring environnemental ou l’hydrologie urbaine. Elles peuvent aussi servir comme des indicateurs des changements de l’utilisation du sol. De techniques telles l’analyse des vecteurs de changement ou les indices de végétation son employées à cette fin. / Nowadays land use/land cover maps at regional scale are commonly generated with satellite data of medium spatial resolution (between 10 m and 30m). The National Land Cover Database (NLCD) in the United States and the Coordination of Information on the Environment (CORINE) Land Cover program in Europe, both based on LANDSAT images, are two typical examples. However, these maps become rapidly obsolete, especially in highly dynamic areas such as mega cities and metropolitan areas. In many applications, such as to monitor the water quality affected by the Land use/Land cover (LULC) change, the spread of invasive species, policy making for city managers, annual updating of LULC maps is required. Since 2007, the USGS offers access to ortho-rectified LANDSAT imagery free of charge. Both archived (since 1984) and recently acquired images are available. Without doubt, such data availability will stimulate the research on fast and cost effective methods and techniques for “continuous” regional land cover/use map updating using medium resolution satellite imagery. The objective of this research was to evaluate the potential of such medium resolution satellite imagery for providing information on changes useful for the continuous updating of LULC maps at a regional scale in the case of the Montreal Metropolitan Community (MMC) area, a typical North American metropolis. Previous studies have demonstrated that many factors could affect the results of automatic change detection such as: (1) the characteristics of the images (spatial resolution, spectral bands, etc.); (2) the method itself used to automatically detect changes; and (3) the complexity of the landscape. In the study site except for the Central Business District (CBD) and some commercial streets, land uses (industrial, commercial, residential, etc.) are well delimited. Thus this study was focused on the other factors affecting change detection results, namely, the characteristics of the images and the method of change detection. We used 6 spectral bands of LANDSAT TM/ETM+ with 30 m spatial resolution and 3 spectral bands of ASTER-VNIR with 15 m spatial resolution to evaluate the impact of image characteristics on change detection. Concerning the change detection method, we decided to compare two types of automatic techniques: (1) techniques providing information principally on the location of changed areas,and (2) techniques providing information on both the location of changed areas and the type of changes ("from-to" classes). The main conclusions of this research are as follows: Change detection techniques such as image differencing or change vector analysis applied to LANDSAT multi-temporal imagery provide an accurate picture of changed areas in a fast and efficient manner. They can thus be integrated in a continuous monitoring system for a rapid evaluation of the volume of changes. The produced maps could be helpful to guide the acquisition of high spatial resolution imagery if a detailed identification of the type of changes is required. Change detection techniques such as principal component analysis and post-classification comparison applied to LANDSAT multi-temporal imagery could provide a relatively accurate picture of “from-to” classes but at a very general thematic level (for example, built-up to green space and vice-versa, forest lands to bare soil and vice-versa, etc.). ASTER images with better spatial resolution but with less spectral bands than LANDSAT images do not provide more detailed thematic information (for example forest land to commercial or industrial areas). The results indicate that future research should be focused on the detection of changes in the vegetation cover as medium resolution imagery is highly sensitive to this type of surface cover. Maps indicating the location and the type of changes in vegetation cover are in itself very useful for various applications, such as environmental monitoring or urban hydrology, and can be used as indicators on land use changes. Techniques such as change vector analysis or vegetation indices could be used to this end.
16

Télédétection du carbone organique des lacs boréaux

Leguet, Jean-Baptiste 04 1900 (has links)
Une estimation des quantités de carbone organique dissous dans les millions de lacs boréaux est nécessaire pour améliorer notre connaissance du cycle global du carbone. Les teneurs en carbone organique dissous sont corrélées avec les quantités de matière organique dissoute colorée qui est visible depuis l’espace. Cependant, les capteurs actuels offrent une radiométrie et une résolution spatiale qui sont limitées par rapport à la taille et l’opacité des lacs boréaux. Landsat 8, lancé en février 2013, offrira une radiométrie et une résolution spatiale améliorées, et produira une couverture à grande échelle des régions boréales. Les limnologistes ont accumulé des années de campagnes de terrain dans les régions boréales pour lesquelles une image Landsat 8 sera disponible. Pourtant, la possibilité de combiner des données de terrain existantes avec une image satellite récente n'a pas encore été évaluée. En outre, les différentes stratégies envisageables pour sélectionner et combiner des mesures répétées au cours du temps, sur le terrain et depuis le satellite, n'ont pas été évaluées. Cette étude présente les possibilités et les limites d’utiliser des données de terrain existantes avec des images satellites récentes pour développer des modèles de prédiction du carbone organique dissous. Les méthodes se basent sur des données de terrain recueillies au Québec dans 53 lacs boréaux et 10 images satellites acquises par le capteur prototype de Landsat 8. Les délais entre les campagnes de terrain et les images satellites varient de 1 mois à 6 ans. Le modèle de prédiction obtenu se compare favorablement avec un modèle basé sur des campagnes de terrain synchronisées avec les images satellite. L’ajout de mesures répétées sur le terrain, sur le satellite, et les corrections atmosphériques des images, n’améliorent pas la qualité du modèle de prédiction. Deux images d’application montrent des distributions différentes de teneurs en carbone organique dissous et de volumes, mais les quantités de carbone organique dissous par surface de paysage restent de même ordre pour les deux sites. Des travaux additionnels pour intégrer les sédiments dans l’estimation sont nécessaires pour améliorer le bilan du carbone des régions boréales. / A remote sensing approach to estimate carbon stocks in the millions of boreal lakes is highly desirable to improve our understanding of carbon cycles. Lakes carbon content is often correlated to colored dissolved organic matter (CDOM) content, which is visible from space. Meanwhile, current sensors offer limited radiometry and spatial resolution in regard to boreal lakes opacity and size. Landsat 8, launched in February 2013, offers improved radiometry and spatial resolution, and will provide large-scale coverage of boreal regions. Limnologists gathered years of field campaigns in the boreal regions for which a clear Landsat 8 image will be available. Yet the possibility to combine legacy field data with new satellite imagery has not been assessed yet. Furthermore, the different strategies to select and combine timely repeated lakes measurements in the field and on the satellite have not been assessed either. In this study, we address the opportunities and limits to combine legacy field data with new satellite imagery to develop CDOM predictive models. Methods are based on field data from Quebec collected in 53 boreal lakes and 10 satellite images acquired with the prototype of Landsat 8. Delays between field campaigns and satellite overpasses varied from 1 month to 6 years. Results show that a CDOM predictive model based on existing field data compares favorably with models based on carefully coordinated field campaigns. The quality of the model does not improve by adding repeat measurements in the field and on the satellite, or by using atmospherically corrected images. Two images from different sites show different distributions of lakes dissolved organic carbon concentrations and volumes, but the total dissolved organic carbon storage per landscape unit in the two sites are in the same range. Additional work to link satellite data to lakes sediments carbon content is needed to refine the global carbon budget in the boreal regions.
17

Caractérisation des occupations du sol en milieu urbain par imagerie radar

Codjia, Claude 05 1900 (has links)
Cette étude vise à tester la pertinence des images RSO - de moyenne et de haute résolution - à la caractérisation des types d’occupation du sol en milieu urbain. Elle s’est basée sur des approches texturales à partir des statistiques de deuxième ordre. Plus spécifiquement, on recherche les paramètres de texture les plus pertinents pour discriminer les objets urbains. Il a été utilisé à cet égard des images Radarsat-1 en mode fin en polarisation HH et Radarsat-2 en mode fin en double et quadruple polarisation et en mode ultrafin en polarisation HH. Les occupations du sol recherchées étaient le bâti dense, le bâti de densité moyenne, le bâti de densité faible, le bâti industriel et institutionnel, la végétation de faible densité, la végétation dense et l’eau. Les neuf paramètres de textures analysés ont été regroupés, en familles selon leur définition mathématique. Les paramètres de ressemblance/dissemblance regroupent l’Homogénéité, le Contraste, la Similarité et la Dissimilarité. Les paramètres de désordre sont l’Entropie et le Deuxième Moment Angulaire. L’Écart-Type et la Corrélation sont des paramètres de dispersion et la Moyenne est une famille à part. Il ressort des expériences que certaines combinaisons de paramètres de texture provenant de familles différentes utilisés dans les classifications donnent de très bons résultants alors que d’autres associations de paramètres de texture de définition mathématiques proches génèrent de moins bons résultats. Par ailleurs on constate que si l’utilisation de plusieurs paramètres de texture améliore les classifications, la performance de celle-ci plafonne à partir de trois paramètres. Malgré la bonne performance de cette approche basée sur la complémentarité des paramètres de texture, des erreurs systématiques dues aux effets cardinaux subsistent sur les classifications. Pour pallier à ce problème, il a été développé un modèle de compensation radiométrique basé sur la section efficace radar (SER). Une simulation radar à partir du modèle numérique de surface du milieu a permis d'extraire les zones de rétrodiffusion des bâtis et d'analyser les rétrodiffusions correspondantes. Une règle de compensation des effets cardinaux fondée uniquement sur les réponses des objets en fonction de leur orientation par rapport au plan d'illumination par le faisceau du radar a été mise au point. Des applications de cet algorithme sur des images RADARSAT-1 et RADARSAT-2 en polarisations HH, HV, VH, et VV ont permis de réaliser de considérables gains et d’éliminer l’essentiel des erreurs de classification dues aux effets cardinaux. / This study aims to test the relevance of medium and high-resolution SAR images on the characterization of the types of land use in urban areas. To this end, we have relied on textural approaches based on second-order statistics. Specifically, we look for texture parameters most relevant for discriminating urban objects. We have used in this regard Radarsat-1 in fine polarization mode and Radarsat-2 HH fine mode in dual and quad polarization and ultrafine mode HH polarization. The land uses sought were dense building, medium density building, low density building, industrial and institutional buildings, low density vegetation, dense vegetation and water. We have identified nine texture parameters for analysis, grouped into families according to their mathematical definitions in a first step. The parameters of similarity / dissimilarity include Homogeneity, Contrast, the Differential Inverse Moment and Dissimilarity. The parameters of disorder are Entropy and the Second Angular Momentum. The Standard Deviation and Correlation are the dispersion parameters and the Average is a separate family. It is clear from experience that certain combinations of texture parameters from different family used in classifications yield good results while others produce kappa of very little interest. Furthermore, we realize that if the use of several texture parameters improves classifications, its performance ceils from three parameters. The calculation of correlations between the textures and their principal axes confirm the results. Despite the good performance of this approach based on the complementarity of texture parameters, systematic errors due to the cardinal effects remain on classifications. To overcome this problem, a radiometric compensation model was developed based on the radar cross section (SER). A radar simulation from the digital surface model of the environment allowed us to extract the building backscatter zones and to analyze the related backscatter. Thus, we were able to devise a strategy of compensation of cardinal effects solely based on the responses of the objects according to their orientation from the plane of illumination through the radar's beam. It appeared that a compensation algorithm based on the radar cross section was appropriate. Some examples of the application of this algorithm on HH polarized RADARSAT-2 images are presented as well. Application of this algorithm will allow considerable gains with regard to certain forms of automation (classification and segmentation) at the level of radar imagery thus generating a higher level of quality in regard to visual interpretation. Application of this algorithm on RADARSAT-1 and RADARSAT-2 images with HH, HV, VH, and VV polarisations helped make considerable gains and eliminate most of the classification errors due to the cardinal effects.
18

Détection de points chauds de déforestation à Bornéo de 2000 à 2009 à partir d'images MODIS

Dorais, Alexis 01 1900 (has links)
Ce travail s’inscrit dans le cadre d’un programme de recherches appuyé par le Conseil de recherches en sciences humaines du Canada. / Les forêts de Bornéo sont inestimables. En plus d’une faune et d’une flore riche et diversifiée, ses milieux naturels constituent d’efficaces réservoirs de carbone. En outre, la matière ligneuse qui y est abondante fait l’objet d’une exploitation intensive. Par contre, c’est le potentiel agricole de l’île qui crée le plus d’enthousiasme, principalement en ce qui concerne la culture du palmier à huile. Pour tenter de mieux comprendre et surveiller le phénomène, nous avons développé des méthodes de détection de la déforestation et de la dégradation des forêts. Ces méthodes doivent tenir compte des caractéristiques propres à l’île. C’est que Bornéo est abondamment affectée par une nébulosité constante qui complexifie considérablement son observation à partir des satellites. Malgré ces contraintes, nous avons produit une série chronologique annuelle des points chauds de déforestation et de dégradation des forêts pour les années 2000 à 2009. / Borneo’s forests are priceless. Beyond the richness and diversity of its fauna and flora, its natural habitats constitute efficient carbon reservoirs. Unfortunately, the vast forests of the island are rapidly being cut down, both by the forestry industry and the rapidly expanding oil palm industry. In this context, we’ve developed methods to detect deforestation and forest degradation in order to better understand and monitor the phenomena. In doing so, the peculiarities of Borneo, such as the persistent cloud cover, had to be accounted for. Nevertheless, we succeeded in producing a time series of the yearly forest degradation and deforestations hotspots for the year 2000 through the year 2009.
19

Caractérisation des occupations du sol en milieu urbain par imagerie radar

Codjia, Claude 05 1900 (has links)
Cette étude vise à tester la pertinence des images RSO - de moyenne et de haute résolution - à la caractérisation des types d’occupation du sol en milieu urbain. Elle s’est basée sur des approches texturales à partir des statistiques de deuxième ordre. Plus spécifiquement, on recherche les paramètres de texture les plus pertinents pour discriminer les objets urbains. Il a été utilisé à cet égard des images Radarsat-1 en mode fin en polarisation HH et Radarsat-2 en mode fin en double et quadruple polarisation et en mode ultrafin en polarisation HH. Les occupations du sol recherchées étaient le bâti dense, le bâti de densité moyenne, le bâti de densité faible, le bâti industriel et institutionnel, la végétation de faible densité, la végétation dense et l’eau. Les neuf paramètres de textures analysés ont été regroupés, en familles selon leur définition mathématique. Les paramètres de ressemblance/dissemblance regroupent l’Homogénéité, le Contraste, la Similarité et la Dissimilarité. Les paramètres de désordre sont l’Entropie et le Deuxième Moment Angulaire. L’Écart-Type et la Corrélation sont des paramètres de dispersion et la Moyenne est une famille à part. Il ressort des expériences que certaines combinaisons de paramètres de texture provenant de familles différentes utilisés dans les classifications donnent de très bons résultants alors que d’autres associations de paramètres de texture de définition mathématiques proches génèrent de moins bons résultats. Par ailleurs on constate que si l’utilisation de plusieurs paramètres de texture améliore les classifications, la performance de celle-ci plafonne à partir de trois paramètres. Malgré la bonne performance de cette approche basée sur la complémentarité des paramètres de texture, des erreurs systématiques dues aux effets cardinaux subsistent sur les classifications. Pour pallier à ce problème, il a été développé un modèle de compensation radiométrique basé sur la section efficace radar (SER). Une simulation radar à partir du modèle numérique de surface du milieu a permis d'extraire les zones de rétrodiffusion des bâtis et d'analyser les rétrodiffusions correspondantes. Une règle de compensation des effets cardinaux fondée uniquement sur les réponses des objets en fonction de leur orientation par rapport au plan d'illumination par le faisceau du radar a été mise au point. Des applications de cet algorithme sur des images RADARSAT-1 et RADARSAT-2 en polarisations HH, HV, VH, et VV ont permis de réaliser de considérables gains et d’éliminer l’essentiel des erreurs de classification dues aux effets cardinaux. / This study aims to test the relevance of medium and high-resolution SAR images on the characterization of the types of land use in urban areas. To this end, we have relied on textural approaches based on second-order statistics. Specifically, we look for texture parameters most relevant for discriminating urban objects. We have used in this regard Radarsat-1 in fine polarization mode and Radarsat-2 HH fine mode in dual and quad polarization and ultrafine mode HH polarization. The land uses sought were dense building, medium density building, low density building, industrial and institutional buildings, low density vegetation, dense vegetation and water. We have identified nine texture parameters for analysis, grouped into families according to their mathematical definitions in a first step. The parameters of similarity / dissimilarity include Homogeneity, Contrast, the Differential Inverse Moment and Dissimilarity. The parameters of disorder are Entropy and the Second Angular Momentum. The Standard Deviation and Correlation are the dispersion parameters and the Average is a separate family. It is clear from experience that certain combinations of texture parameters from different family used in classifications yield good results while others produce kappa of very little interest. Furthermore, we realize that if the use of several texture parameters improves classifications, its performance ceils from three parameters. The calculation of correlations between the textures and their principal axes confirm the results. Despite the good performance of this approach based on the complementarity of texture parameters, systematic errors due to the cardinal effects remain on classifications. To overcome this problem, a radiometric compensation model was developed based on the radar cross section (SER). A radar simulation from the digital surface model of the environment allowed us to extract the building backscatter zones and to analyze the related backscatter. Thus, we were able to devise a strategy of compensation of cardinal effects solely based on the responses of the objects according to their orientation from the plane of illumination through the radar's beam. It appeared that a compensation algorithm based on the radar cross section was appropriate. Some examples of the application of this algorithm on HH polarized RADARSAT-2 images are presented as well. Application of this algorithm will allow considerable gains with regard to certain forms of automation (classification and segmentation) at the level of radar imagery thus generating a higher level of quality in regard to visual interpretation. Application of this algorithm on RADARSAT-1 and RADARSAT-2 images with HH, HV, VH, and VV polarisations helped make considerable gains and eliminate most of the classification errors due to the cardinal effects.
20

Télédétection du carbone organique des lacs boréaux

Leguet, Jean-Baptiste 04 1900 (has links)
Une estimation des quantités de carbone organique dissous dans les millions de lacs boréaux est nécessaire pour améliorer notre connaissance du cycle global du carbone. Les teneurs en carbone organique dissous sont corrélées avec les quantités de matière organique dissoute colorée qui est visible depuis l’espace. Cependant, les capteurs actuels offrent une radiométrie et une résolution spatiale qui sont limitées par rapport à la taille et l’opacité des lacs boréaux. Landsat 8, lancé en février 2013, offrira une radiométrie et une résolution spatiale améliorées, et produira une couverture à grande échelle des régions boréales. Les limnologistes ont accumulé des années de campagnes de terrain dans les régions boréales pour lesquelles une image Landsat 8 sera disponible. Pourtant, la possibilité de combiner des données de terrain existantes avec une image satellite récente n'a pas encore été évaluée. En outre, les différentes stratégies envisageables pour sélectionner et combiner des mesures répétées au cours du temps, sur le terrain et depuis le satellite, n'ont pas été évaluées. Cette étude présente les possibilités et les limites d’utiliser des données de terrain existantes avec des images satellites récentes pour développer des modèles de prédiction du carbone organique dissous. Les méthodes se basent sur des données de terrain recueillies au Québec dans 53 lacs boréaux et 10 images satellites acquises par le capteur prototype de Landsat 8. Les délais entre les campagnes de terrain et les images satellites varient de 1 mois à 6 ans. Le modèle de prédiction obtenu se compare favorablement avec un modèle basé sur des campagnes de terrain synchronisées avec les images satellite. L’ajout de mesures répétées sur le terrain, sur le satellite, et les corrections atmosphériques des images, n’améliorent pas la qualité du modèle de prédiction. Deux images d’application montrent des distributions différentes de teneurs en carbone organique dissous et de volumes, mais les quantités de carbone organique dissous par surface de paysage restent de même ordre pour les deux sites. Des travaux additionnels pour intégrer les sédiments dans l’estimation sont nécessaires pour améliorer le bilan du carbone des régions boréales. / A remote sensing approach to estimate carbon stocks in the millions of boreal lakes is highly desirable to improve our understanding of carbon cycles. Lakes carbon content is often correlated to colored dissolved organic matter (CDOM) content, which is visible from space. Meanwhile, current sensors offer limited radiometry and spatial resolution in regard to boreal lakes opacity and size. Landsat 8, launched in February 2013, offers improved radiometry and spatial resolution, and will provide large-scale coverage of boreal regions. Limnologists gathered years of field campaigns in the boreal regions for which a clear Landsat 8 image will be available. Yet the possibility to combine legacy field data with new satellite imagery has not been assessed yet. Furthermore, the different strategies to select and combine timely repeated lakes measurements in the field and on the satellite have not been assessed either. In this study, we address the opportunities and limits to combine legacy field data with new satellite imagery to develop CDOM predictive models. Methods are based on field data from Quebec collected in 53 boreal lakes and 10 satellite images acquired with the prototype of Landsat 8. Delays between field campaigns and satellite overpasses varied from 1 month to 6 years. Results show that a CDOM predictive model based on existing field data compares favorably with models based on carefully coordinated field campaigns. The quality of the model does not improve by adding repeat measurements in the field and on the satellite, or by using atmospherically corrected images. Two images from different sites show different distributions of lakes dissolved organic carbon concentrations and volumes, but the total dissolved organic carbon storage per landscape unit in the two sites are in the same range. Additional work to link satellite data to lakes sediments carbon content is needed to refine the global carbon budget in the boreal regions.

Page generated in 0.1215 seconds