1 |
The role of mesoscale processes controlling physical and biological variability in the oligotrophic Central Red SeaZarokanellos, Nikolaos 05 1900 (has links)
The existing observations and model simulations indicate that mesoscale eddies
and the Eastern Boundary Current (EBC) have a significant role in the complex
circulation of the Red Sea. However, a full understanding of the processes that contribute
to the physics and biological responses of the central Red Sea (CRS) has been limited due
to the lack of sustained in-situ observations. In this dissertation study, in-situ observations
extending over a thirty-three month period from spring 2013 through winter 2015 include
an intensive ship-based and glider monitoring program to understand the key dynamic
features of the CRS circulation. Nine glider missions and five ship-based surveys provide
concrete resolution of both spatial and temporal variability in the CRS. The quasicontinuous
glider observations resolve the influence of distinct water masses with a
different origin that is present in the study area. Our results show that mesoscale eddies
and the an intrusion of Gulf of Aden water governs the physical and biochemical
characteristics of the CRS during the winter to summer transition period in 2013. During
this period, an anticyclonic eddy appears to redirect the northward flow along the eastern
boundary. Ship-based observations in fall 2013 indicate that the EBC can periodically
transport patches of less salty and warmer water containing higher chlorophyll
concentrations from south into the CRS. During spring 2014, ship observations show the
presence of a cyclonic/anticyclonic eddy pair. The cyclonic eddy contribute an upward
nutrient flux, resulting in an increase integrated chlorophyll concentration within the
eddy. Higher chlorophyll and CDOM concentrations and lower N:P ratios characterized
the inflow of lower salinity Gulf of Aden water from the south. To understand better how
the mesoscale eddy activity, stratification, and the EBC modulate the nutrient availability
and planktonic food web architecture in Red Sea two addition hydrographic surveys with
plankton sampling were conducted in fall 2014 and spring 2015. The seasonal availability
of Gulf of Aden water, stratification and eddies exerted a demonstrable effect on the
plankton community by modulating the availability and utilization of allochthonous vs.
autochthonous macronutrients by phytoplankton. Strong stratification, higher
temperatures and depletion of nutrients by phytoplankton, subjected the plankton
community to an overall nitrogen and phosphorus deficit in fall. To evaluate the role of
the winter mixing, mesoscale eddies, and EBC within CRS during the winter to spring
period, a sustained glider study (~91 days) was initiated from December 2014 to March
2015. Glider observations show the seasonal contrasts and transitions from strong
summer stratification to winter mixing, with a corresponding transition from a well
defined deep chlorophyll maximum to phytoplankton population intrusions of lower
salinity water from the Gulf of Aden contributed to both the physical and biochemical
variability within the region. Both GASW and GAIW can be entrained and diverted
across the basin by larger eddies. Eddies play a role in the mixing between warmer,
fresher water from the Gulf of Aden, and cooler, saltier water from the northern Red Sea.
|
2 |
Upwelling and cross-shelf transport dynamics along the Pacific Eastern BoundaryCombes, Vincent 06 July 2010 (has links)
The upwelling and cross-shelf transport dynamics along the Pacific Eastern Boundary is explored using a high resolution ocean model for the last 60 years. Three ocean circulations have been modeled. From North to South, we investigate the dynamics of the Gulf of Alaska (GOA), the California Current System (CCS) and the Humboldt Current System (HCS, also known as the Peru-Chile Current System). The statistics of coastal waters transport are computed using a model passive tracer, which is continuously released at the coast. By looking at the passive tracer concentration distribution, we find that the Pacific Decadal Oscillation modulates the coastal variability of the GOA, the North Pacific Gyre Oscillation controls the upwelling of the CCS, while the El-Niño Southern Oscillation affects the upwelling of Peru and Chile mainly through coastally trapped Kelvin waves. Results also emphasize the key role of the mesoscale eddies in the offshore transport of coastal waters masses. The passive tracer experiments, performed in this study in the GOA, CCS, and HCS, therefore could provide a dynamical framework to understand the dynamics of the upwelling/downwelling and offshore transport of nutrient rich coastal water and to interpret how it responds to atmospheric forcing. This also could reinforce our interpretation (and therefore predictions) in the changes in vertical and offshore advection of other important biogeochemical quantities, essential in understanding ecosystem variability.
|
3 |
Investigation of the California Undercurrent off the west coast of Vancouver IslandKrassovski, Maxim 14 August 2008 (has links)
Current meter records from a long term mooring site on the continental slope off the west coast of Vancouver Island, British Columbia, Canada are used to investigate the scales of variability of the subsurface California Undercurrent and its relation to possible driving mechanisms. Observed along the west coast of North America from Baja California to Vancouver Island, the California Undercurrent is part of the California Current System, a typical basin-scale eastern boundary circulation system. Of the four instruments at nominal depths of 35, 100, 175, and 400 m, the upper two show seasonally reversing flow, while the 175 m instrument registers a year-round poleward flow. The deepest current meter, located approximately 100 m above the bottom, reflects the influence of a nearby submarine canyon. The flow at 100 and 175 m depths, as well as the water properties sampled in the region with CTD casts, are characteristic of the temporal and spatial variability of the California Undercurrent over the continental slope off central and southern Vancouver Island. The correlation of the 175 m flow with local atmospheric forcing (wind stress) in the low-frequency band (periods of months) is higher than with ocean-wide climatic indices, suggesting that regional processes play a key role in the forcing of the subsurface flow.
|
4 |
Investigation of the California Undercurrent off the west coast of Vancouver IslandKrassovski, Maxim 14 August 2008 (has links)
Current meter records from a long term mooring site on the continental slope off the west coast of Vancouver Island, British Columbia, Canada are used to investigate the scales of variability of the subsurface California Undercurrent and its relation to possible driving mechanisms. Observed along the west coast of North America from Baja California to Vancouver Island, the California Undercurrent is part of the California Current System, a typical basin-scale eastern boundary circulation system. Of the four instruments at nominal depths of 35, 100, 175, and 400 m, the upper two show seasonally reversing flow, while the 175 m instrument registers a year-round poleward flow. The deepest current meter, located approximately 100 m above the bottom, reflects the influence of a nearby submarine canyon. The flow at 100 and 175 m depths, as well as the water properties sampled in the region with CTD casts, are characteristic of the temporal and spatial variability of the California Undercurrent over the continental slope off central and southern Vancouver Island. The correlation of the 175 m flow with local atmospheric forcing (wind stress) in the low-frequency band (periods of months) is higher than with ocean-wide climatic indices, suggesting that regional processes play a key role in the forcing of the subsurface flow.
|
5 |
Kinematics and Heat Budget of the Leeuwin CurrentDomingues, Catia Motta, Catia.Domingues@csiro.au January 2006 (has links)
This study investigates the upper ocean circulation along the west Australian coast, based
on recent observations (WOCE ICM6, 1994/96) and numerical output from the 1/6 degree Parallel Ocean
Program model (POP11B 1993/97). Particularly, we identify the source regions of the Leeuwin
Current, quantify its mean and seasonal variability in terms of volume, heat and salt transports,
and examine its heat balance (cooling mechanism). This also leads to further understanding of the
regional circulation associated with the Leeuwin Undercurrent, the Eastern Gyral Current and the
southeast Indian Subtropical Gyre.
The tropical and subtropical sources of the Leeuwin Current are understood from an
online numerical particle tracking. Some of the new findings are the Tropical Indian Ocean source
of the Leeuwin Current (in addition to the Indonesian Throughflow/Pacific); the Eastern Gyral
Current as a recirculation of the South Equatorial Current; the subtropical source of the Leeuwin
Current fed by relatively narrow subsurface-intensified eastward jets in the Subtropical Gyre, which
are also a major source for the Subtropical Water (salinity maximum) as observed in the Leeuwin
Undercurrent along the ICM6 section at 22 degrees S.
The ICM6 current meter array reveals a rich vertical current structure near North West
Cape (22 degrees S). The coastal part of the Leeuwin Current has dominant synoptic variability and
occasionally contains large spikes in its transport time series arising from the passage of tropical
cyclones. On the mean, it is weaker and shallower compared to further downstream, and it only
transports Tropical Water, of a variable content. The Leeuwin Undercurrent carries Subtropical
Water, South Indian Central Water and Antarctic Intermediate Water equatorward between
150/250 to 500/750 m. There is a poleward flow just below the undercurrent which advects a
mixed Intermediate Water, partially associated with outflows from the Red Sea and Persian Gulf.
Narrow bottom-intensified currents are also observed.
The 5-year mean model Leeuwin Current is a year-round poleward flow between 22 degrees S and
34 degrees S. It progressively deepens, from 150 to 300 m depth. Latitudinal variations in its volume
transport are a response to lateral inflows/outflows. It has double the transport at 34 degrees S (-2.2 Sv)
compared to at 22 degrees S (-1.2 Sv). These model estimates, however, may underestimate the transport
of the Leeuwin Current by 50%. Along its path, the current becomes cooler (6 degrees C), saltier (0.6 psu)
and denser (2 kg m -3). At seasonal scales, a stronger poleward flow in May-June advects the
warmest and freshest waters along the west Australian coast. This advection is apparently spun up
by the arrival of a poleward Kelvin wave in April, and reinforced by a minimum in the equatorward
wind stress during July.
In the model heat balance, the Leeuwin Current is significantly cooled by the eddy heat
flux divergence (4 degrees C out of 6 degrees C), associated with mechanisms operating at submonthly time scales.
However, exactly which mechanisms it is not yet clear. Air-sea fluxes only account for ~30% of the
cooling and seasonal rectification is negligible. The eddy heat divergence, originating over a narrow
region along the outer edge of the Leeuwin Current, is responsible for a considerable warming of a
vast area of the adjacent ocean interior, which is then associated with strong heat losses to the
atmosphere. The model westward eddy heat flux estimates are considerably larger than those
associated with long lived warm core eddies detaching from the Leeuwin Current and moving
offshore. This suggests that these mesoscale features are not the main mechanism responsible for
the cooling of the Leeuwin Current. We suspect instead that short lived warm core eddies might
play an important role.
|
Page generated in 0.1081 seconds