1 |
Improving Peripheral Vision Through Optical Correction and Stimulus MotionLewis, Peter January 2016 (has links)
The loss of central vision subsequent to macular disease is often extremely debilitating. People with central field loss (CFL) must use other peripheral areas of the retina in order to see; areas with inferior resolution capacity, which are also affected by off-axis optical errors. The overall aim of the work encompassed by this thesis was to identify and evaluate methods of improving vision for people with CFL; with focus on the effects of off-axis optical correction and stimulus motion on resolution acuity and contrast sensitivity. Off-axis optical errors were measured using a commercially-available COAS-HD VR open-view aberrometer. We used adaptive psychophysical methods to evaluate grating resolution acuity and contrast sensitivity in the peripheral visual field; drifting gratings were employed to measure the effect of motion on these two measures of visual performance. The effect of sphero-cylindrical correction and stimulus motion on visual performance in healthy eyes and in subjects with CFL was also studied; in addition, the effect of adaptive optics aberration correction was examined in one subject with CFL. The COAS-HD aberrometer provided rapid and reliable measurements of off-axis refractive errors. Correction of these errors gave improvements in low-contrast resolution acuity in subjects with higher amounts of oblique astigmatism. Optical correction also improved high-contrast resolution acuity in most subjects with CFL, but not for healthy subjects. Adaptive optics correction improved both high and low contrast resolution acuity in the preferred retinal locus of a subject with CFL. The effect of stimulus motion depended on spatial frequency; motion of 7.5 Hz improved contrast sensitivity for stimuli of low spatial frequency in healthy and CFL subjects. Motion of 15 Hz had little effect on contrast sensitivity for low spatial frequency but resulted in reduced contrast sensitivity for higher spatial frequencies in healthy subjects. Finally, high-contrast resolution acuity was relatively insensitive to stimulus motion in the periphery. This thesis has served to broaden the knowledge regarding peripheral optical errors, stimulus motion and their effects on visual function, both in healthy subjects and in people with CFL. Overall it has shown that correction of off-axis refractive errors is important for optimizing peripheral vision in subjects with CFL; the use of an open-view aberrometer simplifies the determination of these errors. In addition, moderate stimulus motion can have a beneficial effect on contrast sensitivity for objects of predominantly low spatial frequency.
|
Page generated in 0.1186 seconds