• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Změny reliéfu dna a objemu VD Fojtka vlivem zanášení / Changes in volume of water reservoir Fojtka due to sediment flux

Vlasák, Tomáš January 2016 (has links)
Sedimentation in dams is a natural process depending on various factors over a period of time. Sediments influence both total capacity of dam's surface and also relief of bottom. This thesis deals with amount of sediment in Fojtka dam and with change of its bottom's relief in past 109 years since its establishment. There was conducted measuring using an echosounder in a boat. Final output derived from this experiment was a point layer including 5500 point items. Subsequently there was executed a measurement of dam's shoreline using GPS device. Data were processed in ArcGIS software, then reduced and edited to be used for interpolation tools of ArcToolbox. In order to select the most accurate interpolation method, there were created validation data, which were compared with interpolated data. The best results have been achieved by interpolation method Kriging and TIN in resolution 0.5 m. Original maps were vectorized for comparison with current condition. Created validation data were compared in order to show accuracy of particular interpolation. The most useful evaluated method for gained data was TIN method in resolution 0.5 m. TIN method was applied in both data sets for 2D and 3D bottom relief visualization and also for calculation of actual water volume and area of water surface of the dam. Difference in bottom's relief of Fojtka dam showed capacity reduction about 6,7 % and reduction of water surface area about 3,2 %. Regular extracting of sediment in reservoir located above the dam causes this relatively small silting ratio.
2

Acoustic and ecological investigations into predator-prey interactions between Antarctic krill (Euphausia superba) and seal and bird predators

Cox, Martin James January 2008 (has links)
1. Antarctic krill (Euphausia superba) form aggregations known as swarms that vary greatly in size and density. Six acoustic surveys were conducted as part of multidisciplinary studies at two study sites, the western and eastern core boxes (WCB and ECB), during the 1997, 1998 and 1999 austral summers, at South Georgia. A quantitative, automated, image processing algorithm was used to identify swarms, and calculate swarm descriptors, or metrics. In contrast to acoustic surveys of aggregations of other pelagic species, a strong correlation (r = 0.88, p = 0.02, 95% C.I.= 0.24 to 0.99) between the number of krill swarms and the mean areal krill density [rho.hat] was found. Multivariate analysis was used to partition swarms into three types, based on contrasting morphological and internal krill density parameters. Swarm types were distributed differently between inter-surveys and between on and off-shelf regions. This swarm type variation has implications for krill predators, by causing spatial heterogeneity in swarm detectability, suggesting that for optimal foraging to occur, predators must engage in some sort of adaptive foraging strategy. 2. Krill predator-prey interactions were found to occur at multiple spatial and temporal scales, in a nested, or hierarchical structure. At the largest inter-survey scale, an index of variability, I, was developed to compare variation in survey-scale predator sightings, sea temperature and [rho.hat]. Using I and a two-way ANOVA, core box, rather than year, was found to be a more important factor in determining species distribution. The absence of Blue-petrels (Halobaena caerulea) and the elevated number of Antarctic fur seals (Arctocephalus gazella) suggest that 1998 was a characterised by colder than average water surrounding South Georgia, and a high [rho.hat] in the ECB. At the smaller, intra-survey scales (<80 km, <5 day), the characteristic scale (distances in which predator group size, or krill density were similar, L_s) were determined. For krill and predators L_s varied by survey and the L_s of krill also varied by depth within a survey. Overlap in L_s were stronger between predator species than between a predator species and krill, indicating predators were taking foraging cues from the activity of predators, rather than from the underlying krill distribution. No relationship was found between swarm characteristics and predator activity, suggesting either there is no relationship between krill swarms and predators, or that the predator and acoustic observation techniques may not be appropriate to detect such a relationship. 3. To overcome the 2-D sampling limitations of conventional echosounders, a multibeam echosounder (MBE) observed entire swarms in three-dimensions. Swarms found in the nearshore environment of Livingston Island situated in the South Shetland Islands, exhibited only a narrow range of surface area to volume ratios or roughnesses (R = 3.3, CV = 0.23), suggesting that krill adopt a consistent group behaviour to maintain swarm shape. Generalized additive models (GAM) suggested that the presence of air-breathing predators influenced the shape of a krill swarm (R decreased in the presence of predators: the swarm became more spherical). A 2D distance sampling framework was used to estimate the abundance, N, and associated variance of krill swarms. This technique took into account angular and range detectability (half-normal, [sigma_r.hat] = 365.00 m, CV = 0.16) and determined the vertical distribution of krill swarms to be best approximated by a beta-distribution ([alpha.hat] = 2.62, [CV.hat] = 0.19; [beta.hat] = 2.41, [CV.hat] = 0.15), giving the abundance of swarms in survey region as [N.hat] = 5,062 ([CV.hat] = 0.35). This research represents a substantial contribution to developing estimation of pelagic biomass using MBEs. 4. When using a single- or split-beam missing pings occur when the transmit or receive cycles are interrupted, often by aeration of the water column, under the echosounder transducer during rough weather. A thin-plate regression spline based approach was used to model the missing krill data, with knots chosen using a branch and bound algorithm. This method performs well for acoustic observations of krill swarms where data are tightly clustered and change rapidly. For these data the technique outperformed the standard MGCV GAM, and the technique is applicable for estimating acoustically derived biomass from line transect surveys.
3

Improvement of an acoustic sounder device used to measure atmospheric turbulence

Liu, Jeng-Shiung 12 1900 (has links)
Approved for public release; distribution in unlimited. / Optical turbulence plays an important role in the propagation of electromagnetic waves through the atmosphere because it broadens and distorts the optical beam. A variety of optical, thermal, and acoustic instruments are used to detect the atmospheric turbulence and an acoustic echosounder has proven to be a valuable tool to probe the fine dynamic structure of atmospheric turbulence within first hundred meters above the surface. The first planar acoustic echosounder constructed at the Naval Postgraduate School was by Weingartner and Wroblewski, under Walters' supervision. Moxcey later modified this design by reducing the number of drivers from 25 to 19 and placing the drivers closer together into a hexagonal, close-packed array. This thesis explored the potential sources of the transducer ringing and implemented solutions to the problem. Additionally, we also improved the receiving sensitivity of the echosounder and lowered the electronics noise when receiving. Finally, we applied these techniques to another array assembled with new drivers to improve its performance compared to the previous echosounder array, while measuring and quantifying the level of improvement achieved. / Lieutenant Commander, Republic of China Navy
4

Verificação da aplicabilidade de dados obtidos por sistema LASER batimétrico aerotransportado à cartografia náutica /

Nascimento, Guilherme Antonio Gomes do January 2019 (has links)
Orientador: Mauricio Galo / Resumo: Um Levantamento Hidrográfico (LH) tem como principal meta a obtenção de dados para a edição e atualização de documentos náuticos, estes, voltados à segurança das atividades de navegação. Objetivando padronizar parâmetros de incerteza das cartas náuticas, a Organização Hidrográfica Internacional (OHI) define níveis mínimos de confiança para diferentes ordens. A sugestão dessas especificações foi internalizada pela Marinha do Brasil, responsável pela produção das cartas náuticas brasileiras, na NORMAM-25. Um desses parâmetros é a Incerteza Vertical Total máxima permitida, um indicador de qualidade da medição da profundidade. A informação de profundidade influencia no calado máximo permitido a uma embarcação para transitar em uma região com segurança, o que pode impactar inclusive nas limitações de transações comerciais em terminais portuários, uma vez que as profundidades estimadas com acurácia potencializam os parâmetros de operação dos portos. Por se tratar de um ambiente dinâmico, seja por ação da própria natureza ou devido a atividades antrópicas, a atualização de uma carta náutica deve ser uma preocupação constante. Como complemento à tradicional técnica de levantamento por meio de um ecobatímetro acoplado a embarcações, há a opção de se realizar um LH com o emprego da tecnologia LiDAR (Light Detection And Ranging) a partir de aeronaves, por meio de um aerolevantamento batimétrico por LiDAR (ALB – Airborne LASER Bathymetry), que operam com pulsos LASER na região verde do e... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: A Hydrographic Survey (HS) has as main goal to obtain data for editing and updating nautical documents, these, focused on the safety of navigation. In order to establish a standard of uncertainty parameters for nautical charts, the International Hydrographic Organization (IHO) defines minimum levels of confidence for different orders. The suggestion of these specifications was acknowledged by the Brazilian Navy, institution responsible to produce Brazilian nautical charts, as described in NORMAM-25. One such parameter is the maximum allowed Total Vertical Uncertainty, a quality indicator of the depth measurement. Depth information influences the maximum operational draft for a vessel to safely travel in a region, causing impact on port operations and limiting the commercial transactions. Accurately estimated depths enhance the operational parameters of the ports. Due to the aim of representing a dynamic environment, whether as consequence of the action of nature itself or because of anthropic activities, updating a nautical chart must be a constant concern. As a complement to the traditional survey technique conducted with a boat-coupled echosounder, there is the option of performing a HS using LiDAR (Light Detection And Ranging) technology from aircraft, through LiDAR aerial bathymetry (ALB - Airborne LASER Bathymetry), which operate with LASER pulses in the green region of the electromagnetic spectrum. Considering these points, this work analyzed the differences between the... (Complete abstract click electronic access below) / Mestre
5

Recognition and assessment of seafloor vegetation using a single beam echosounder

Tseng, Yao-Ting January 2009 (has links)
This study focuses on the potential of using a single beam echosounder as a tool for recognition and assessment of seafloor vegetation. Seafloor vegetation is plant benthos and occupies a large portion of the shallow coastal bottoms. It plays a key role in maintaining the ecological balance by influencing the marine and terrestrial worlds through interactions with its surrounding environment. Understanding of its existence on the seafloor is essential for environmental managers. / Due to the important role of seafloor vegetation to the environment, a detailed investigation of acoustic methods that can provide effective recognition and assessment of the seafloor vegetation by using available sonar systems is necessary. One of the frequently adopted approaches to the understanding of ocean environment is through the mapping of the seafloor. Available acoustic techniques vary in kinds and are used for different purposes. Because of the wide scope of available techniques and methods which can be employed in the field, this study has limited itself to sonar techniques of normal incidence configuration relative to seafloors in selected regions and for particular marine habitats. For this study, a single beam echosounder operating at two frequencies was employed. Integrated with the echosounder was a synchronized optical system. The synchronization mechanism between the acoustic and optical systems provided capabilities to have very accurate groundtruth recordings for the acoustic data, which were then utilized as a supervised training data set for the recognition of seafloor vegetation. / In this study, results acquired and conclusions made were all based on the comparison against the photographic recordings. The conclusion drawn from this investigation is only as accurate as within the selected habitat types and within very shallow water regions. / In order to complete this study, detailed studies of literature and deliberately designed field experiments were carried out. Acoustic data classified with the help of the synchronized optical system were investigated by several methods. Conventional methods such as statistics and multivariate analyses were examined. Conventional methods for the recognition of the collected data gave some useful results but were found to have limited capabilities. When seeking for more robust methods, an alternative approach, Genetic Programming (GP), was tested on the same data set for comparison. Ultimately, the investigation aims to understand potential methods which can be effective in differentiating the acoustic backscatter signals of the habitats observed and subsequently distinguishing between the habitats involved in this study.
6

Imagerie 3D du "tube entier" des tunnels navigables / 3D full-surveying of canal-tunnels

Moisan, Emmanuel 19 September 2017 (has links)
L'objectif de la thèse est de développer une méthode de modélisation 3D des tunnels canaux en service, afin de les documenter de manière précise. Le levé des structures est effectué en dynamique depuis un bateau, avec un ensemble de caméras au-dessus de l'eau et un sonar pour la partie immergée. La construction du modèle 3D doit combiner des données acquises dans deux milieux différents, en l'absence de signal GPS pour la localisation du système de mesure. L'approche proposée exploite pleinement les capacités du calcul photogrammétrique, à la fois pour construire le modèle 3D de la voûte et pour estimer la trajectoire du bateau, laquelle permet de géoréférencer les profils de points sonar. L'application du procédé en vraie grandeur dans le tunnel de Niderviller a permis d'obtenir un premier modèle 3D. L'analyse de la méthode a mis en jeu une technologie innovante de mesure sonar statique, nécessitant le développement de traitements appropriés. Elle a permis de jauger les capacités du sonar à numériser les canaux, d'évaluer les trajectoires estimées par photogrammétrie et de comparer quantitativement le modèle obtenu à un modèle de référence préalablement construit. / The aim of this thesis is to develop a 3D modeling method for canal-tunnels in service, in order to document them accurately. The survey of the structures is carried out dynamically from a boat, with a set of cameras above the water and a sonar for the submerged part. The construction of the 3D model must combine data acquired in two different environments, in the absence of a GPS signal to locate the measurement system. The proposed approach makes full use of the capabilities of photogrammetric computation, both to build the 3D model of the vault and to estimate the trajectory of the boat, which allows georefencing of sonar point profiles. The application of the process to field test data acquired in the Niderviller tunnel allowed a first 3D model to be obtained. The analysis of the method involved an innovative static sonar measurement technology, requiring the development of appropriate treatments. It enabled to assess the capacity of the sonar for canal surveying, to evaluate the trajectories estimated using photogrammetry and to compare quantitatively the obtained model with a previously constructed reference mode
7

Integrating Towed Underwater Video with Multibeam Acoustics for Mapping Benthic Habitat and Assessing Reef Fish Communities on the West Florida Shelf

Ilich, Alexander Ross 02 November 2018 (has links)
Using a towed underwater video camera system, benthic habitats were classified along transects in a popular offshore fishing area on the West Florida Shelf (WFS) known as “The Elbow.” Additionally, high resolution multibeam bathymetry and co-registered backscatter data were collected for the entire study area. Using these data, full coverage geologic and biotic habitat maps were developed using both unsupervised and supervised statistical classification methodologies. The unsupervised methodology used was k-means clustering, and the supervised methodology used a random forest algorithm. The two methods produced broadly similar results; however, the supervised methodology outperformed the unsupervised methodology. The results of the supervised classification demonstrated “substantial agreement” (κ>0.6) between observations and predictions for both geologic and biotic habitat, while the results of the unsupervised classification demonstrated “moderate agreement” (κ>0.4) between observations and predictions for both geologic and biotic habitat. Comparisons were made with the previously existing map for this area created by Florida Fish and Wildlife Conservation Commission’s Fish and Wildlife Research Institute (FWC-FWRI). Some features are distinguishable in both maps, but the FWC-FWRI map shows a greater extent of low relief hard bottom features than was predicted in our habitat maps. The areas predicted as low relief hard-bottom by FWC-FWRI often coincide with areas of higher uncertainty in the supervised map of geologic habitat from this study, but even when compared with ground-truth points from the towed video rather than predictions, the low relief hard bottom in FWC-FWRI’s map still corresponds to what was identified as sand in the video 73% of the time. The higher uncertainty might be a result of the presence of mixed habitats, differing morphology of hard-bottom, or the presence of sand intermixed with gravel or debris. More ground-truth samples should be taken in these areas to increase the confidence of these classifications and resolve discrepancies between the two maps. Data from the towed video system were also used to assess differences in fish communities among habitat types and to calculate habitat-specific densities for each taxa. Fish communities were found to significantly differ between soft and hard bottom habitats as well as among the hard-bottom habitats with different vertical relief (flat hard-bottom vs more steeply sloping areas). Additionally, significant differences were found between the fish communities in habitats with attached fauna such as sponges and gorgonians, and areas without attached fauna; however, attached fauna require rock to attach to and the rock habitats rarely lacked attached fauna, so this difference may just reflect the difference between fish communities in sand and rock habitats without the consideration of vertical relief. Moreover, the species driving the differences in the fish communities were identified. Fish were more likely to be present and assemblages were more species rich in more complex habitats (rockier, higher relief, presence of attached fauna). Habitat specific densities were calculated for each species, and general trends are discussed. Lastly the habitat-specific densities were extrapolated to the total area of habitat type (sand vs rock) as predicted by the supervised geologic habitat map. There is predicted to be approximately 111,000 fish (95% CI [67015, 169405]) within the study area based on this method, with ~47,000 (~43%) predicted to be within the sand habitat and ~64,000 (~57%) in the rock habitat. This demonstrates the potential of offshore rocky reefs as “critical habitats” for demersal fish in the offshore environment as rock accounts for just 4% of the study area but is expected to contain over half of the total abundance. The value of sand habitats is also shown, as due to their large area they are able to contribute substantially to the total number of fish despite sustaining comparatively low densities.
8

Geophysical Mapping around Björkö Island in Lake Mälaren, South central Sweden

Fransner, Oscar January 2013 (has links)
The former Viking settlement Birka is located on Björkö Island in Lake Mälaren, the third largest lake in Sweden. Birka is a well-known archeological site that onshore has been carefully examined. The lake floor of the waters surrounding the island has been less investigated but has a great potential to host not yet discovered archeological objects from this former hub for seafarers. Therefore, a geophysical survey including multibeam sonar mapping and subbottom profiling was carried out mainly along the shores of western Björkö Island. Processing and analysis of these collected data form the basis of this thesis. The main aims of this study are to produce a suite of geological maps and stratigraphic profiles that are used to geologically interpret the uppermost sediment stratigraphy and the bathymetry of the area. In addition, the processed data are investigated for archeological objects. The result shows that the acoustic records of the sediment stratigraphy reaches back to glacial clay formed as a consequence of the retreat of the Late Weichselian ice sheet, and that the uppermost sediment units probably are from the time after the isolation of Lake Mälaren from the Baltic Sea. The bathymetry and backscatter results have revealed that this relatively shallow study area contains several objects that potentially could be of interest from an archeological point of view. These objects include several unidentified objects in the Björkö strait and two unregistered shipwrecks where ground truthing data need to be collected to determine their respective origin.
9

Variability in Diel Vertical Migration of Zooplankton and Physical Properties in Saanich Inlet, British Columbia

Sato, Mei 23 May 2013 (has links)
In Saanich Inlet, a fjord located in southern Vancouver Island, British Columbia, dense aggregations of euphausiids exhibit diel vertical migration behavior and their capability of generating turbulence has been suggested. Despite decades of research on diel vertical migration of zooplankton, its variability has not been well studied. In addition, the physical oceanographic environment in Saanich Inlet has not been thoroughly quantified, which raises the possibility of previously observed turbulent bursts of O(10^-5 – 10^-4 W kg^-1) having physical (rather than biological) origin. This work characterizes variability of diel vertical migration behavior using a moored 200-kHz echosounder, complemented by plankton sampling. Physical properties such as barotropic, baroclinic and turbulent signals are described, and the relationship between turbulence and internal waves/scattering layer examined. A two-year high-resolution biacoustic time-series provided by the Victoria Experimental Network Under the Sea (VENUS) cabled observatory allowed quantification of the seasonal variability in migration timing of euphausiids. During spring – fall, early dusk ascent and late dawn descent relative to civil twilight occur. During winter, late dusk ascent and early dawn descent occur. Factors regulating the seasonal changes in migration timing are light availability at the daytime depth of the scattering layers, and size-dependent visual predation risk of euphausiids. Instead of the traditional view of diel vertical migration timing correlated solely with civil twilight, euphausiids also adapt their migration timing to accommodate changes in environmental cues as well as their growth. The pre-spawning period (February – April) is an exception to this seasonal pattern, likely due to the higher energy demands for reproduction. Turbulence and internal waves in Saanich Inlet are characterized based on a one-month mooring deployment. Average dissipation rates are nearly an order of magnitude larger than previously reported values and higher dissipation rates of O(10^-7 – 10^-6 W kg^-1) are occasionally observed. A weak correlation is observed between turbulent dissipation rates and baroclinic velocity/shear. To examine the possibility of biological generation of turbulence, an echosounder at the VENUS cabled observatory is used to simultaneously measure the intensity of the euphausiid scattering layer and its vertical position. Turbulent bursts of the sort previously reported are not observed, and no relation between diel vertical migration and turbulent dissipation rates is found. Physical forcing at the main channel remains as a possible cause of the turbulent bursts. / Graduate / 0416 / 0415
10

Mesure de Matières En Suspension (MES) dans la colonne d'eau par combinaison de méthodes acoustiques et optiques / Measurement Suspended Particulate Matter (SPM) in the water column by combining acoustic and optical methods

Fromant, Guillaume 10 November 2015 (has links)
La mesure de Matières En Suspension (MES) est cruciale autant pour comprendre les transferts sédimentaires que pour les études des écosystèmes marins. Elles sont classiquement mesurées ponctuellement par des prélèvements d’eau in situ, ou à partir des propriétés optiques de l’eau. Mais depuis plusieurs décennies, les appareils acoustiques, ont montré leur capacité à mesurer ces MES sur de plus grands volumes. Ces mesures, en particulier celles de la concentration, s’appuient sur les propriétés de rétrodiffusion des particules. Mais ces mesures demeurent peu représentatives dans la mesure où le contenu en MES dans la colonne d’eau varie à différentes échelles de temps et d’espace. Dans un premier temps, ces travaux de thèse visent à montrer à travers des mesures in situ réalisées dans l’estuaire de l’Aulne qu’il est possible d’étendre spatialement la mesure par inversion des données issues de sondeurs multifaisceaux (SMF). Un modèle de rétrodiffusion adapté à la suspension d’intérêt, constituée dans cette étude d’agrégats estuariens, est d’abord élaboré. Puis grâce à des observations issues d’un profileur multifréquences, la concentration massique en MES, distribuée par classes de tailles, a pu être déterminée par la résolution d’un problème inverse. Ces informations permettent de déterminer les rayons équivalents de la suspension, grâce auxquels les données issues du SMF, au préalable calibrées par une méthode innovante, peuvent être inversées de manière directe. Une étude des incertitudes attachées aux valeurs de concentrations estimées est par la suite proposée afin de qualifier la pertinence des résultats. Puis dans un second temps, les conditions nécessaires à l’établissement d’un protocole de mesure des MES par système multi-capteur sont identifiées. Ce dernier permet la caractérisation en continu des MES à différentes échelles de temps et d’espace, en exploitant la complémentarité des mesures issues des différents instruments. / Measuring Suspended Particulate Matter (SPM) is essential to better understand sediment transport and marine ecosystems. SPM is traditionnaly estimated through in situ water samples analysis, or based on the optical properties of water. Yet for several decades, acoustical devices have shown their capability to measure SPM on larger volumes. These measurements (especially in terms of SPM concentration) are based on the backscattering properties of the particles. However, these measurements remain limited, since the SPM content in the water column is subjected to variations on both spatial and temporal scales.As a first step, this work aims at showing that it is possible to increase the degree of spatialization of the SPM measurements by inverting MultiBeam EchoSounder (MBES) data, through in situ measurements acquired in the Aulne macrotidal estuary. A backscattering model was first designed to describe the backscattering properties of the suspension of interest, consisting in this study in estuarine agregates. Then, thanks to multifrequency observations, the SPM mass concentration sorted by size classes was retrieved through the the resolution of the inverse problem. This kind of information allows to determine the equivalent spherical radius of the the whole suspension, through which the MBES data, calibrated beforehand using an original method, can be directly inverted. Subsequently, a study of the uncertainties attached to the final concentration estimate is proposed in order to qualify the relevance of the results.In a second step, the necessary conditions for establishing a measurement protocol of the SPM are identified. The latter allows continuous characterization of SPM at different spatial and temporal scales, by exploiting the complementarity of the measures delivered by different instruments.

Page generated in 0.4493 seconds