• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea

Pacheco, Yelena Marlese 01 July 2018 (has links)
Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs. Using principal component analysis, PERMANOVA, ANOVA, and phylogenetic reconstructions, we examined the evolution of ecomorphs in the Lonchodinae stick insects of Papua New Guinea. Phylogenetic reconstructions were performed via maximum likelihood and Bayesian methods and ecomorphs were mapped onto recovered topologies to assess patterns of ecomorph evolution. Statistical test supported a general tree lobster ecomorph grouping with overlap of the slender and spiny ecomorph groups. Phylogenetic reconstructions recovered predominantly congruent topologies, with indications of ecomorph convergence across Phasmatodea. Three independent origins of the tree lobster ecomorph were recovered within the subfamily Lonchodinae. When ecomorph evolution was examined across Phasmatodea, multiple origins of the slender, spiny, tree lobster, and large winged ecomorphs were also recovered.
2

The Tettigoniidae (Orthoptera: Ensifera): Phylogeny, Origins, and Leaf-Like Crypsis

Mugleston, Joseph D. 01 June 2016 (has links)
Tettigoniidae (katydids) has more than 7200 species and is the largest family within the insect order Orthoptera. Their unique biology including leaf-like crypsis, acoustic signaling, and courtship rituals garners much of their academic attention. However, the taxonomy of katydids is chaotic and previous to these studies, little work had been done to decipher the phylogenetic relationships within this family. Without a robust phylogenetic framework, questions regarding the evolution of katydid disguises including the leaf-like crypsis cannot be addressed. This dissertation contains three chapters. Chapter 1 provides the first phylogenetic hypothesis focusing on Tettigoniidae. In this chapter we show a character thought to be taxonomically informative, the thoracic auditory spiracle, is homoplasious within Tettigoniidae. We provide evidence that the leaf-like wings of katydids have been derived independently in multiple lineages. Additionally, in Chapter 1 the problematic taxonomy within Tettigoniidae, particularly the lack of monophyly in many of the larger and widespread subfamilies, is addressed. Chapter 2 contains a more in depth look into the evolution of crypsis. Leaf-like wings are common throughout Tettigoniidae, but the definition of leaf-like has varied by author. In this second chapter we provide a ratio method for differentiating between leaf-like and non leaf-like wings. Our ratio method was then verified using geometric morphometics. We found at least 15 independent derivations of leaf-like wings in Tettigoniidae. Furthermore we found that throughout Tettigoniidae the leaf-like wings are not a driver of speciation and selection may favor a shift away from the leaf-like wings. Within the cosmopolitan Phaneropterinae, the trend differs, as there is no significant difference between the speciation and transition rates of the leaf-like and non leaf-like lineages. Chapter 3 presents the largest and most comprehensive phylogeny for Tettigoniidae to date and provides a hypothesis for origins and biogeographic dispersal of katydids. Characters that define subfamilies are similar due to similar selective pressures and are not taxonomically informative. As a result, many of the larger and widespread subfamilies, particularly those with species in similar but geographically distant habitats, are paraphyletic. In this chapter we also provide temporary names to define the two large clades containing the bulk of Tettigoniidae diversity (tettigonioid clade and phaneropteroid clade) in addition to smaller subfamily groups to simplify discussion of katydid relationships until a higher-level taxonomic revision is completed.

Page generated in 0.0383 seconds