• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Financial soundness and development a multi-country analysis using panel data /

Akhter, Md. Selim. January 2008 (has links)
Thesis (Ph.D.)--University of Western Sydney, 2008. / A thesis submitted to the University of Western Sydney, College of Business, School of Economics and Finance, in fulfillment of the requirements for the degree of Doctor of Philosophy. Includes bibliographical references.
2

Uplatnění statistických metod při zpracování dat / The Use of Statistical Methods for Data Processing

Vaněk, Tomáš January 2016 (has links)
The subject of this master’s thesis is to analyze and evaluate the economic indicators of selected company and comparison of these indicators with the nearest competitors. The thesis is divided into three main sections. First part is theoretical and contains information about used economical and statistical terms. Second part contains of analysis of economic indicators, comparison of actual and predicted values and comparison with the nearest competitors. In order to predict future values of indicators, on selected indicators appropriate regression function has been applied. The last part of thesis contains of program created by using VBA in MS Excel, which is designed to calculate the economic indicators, and the part containing proposals for improving the situation of company.
3

Classificação de ratings, sustentabilidade e previsão de default uma abordagem utilizando a regressão quantílica

Alves Filho, Cy Dy Augusto 29 August 2014 (has links)
Made available in DSpace on 2016-03-15T19:32:50Z (GMT). No. of bitstreams: 1 Cy-dy Augusto Alves Filho.pdf: 1241998 bytes, checksum: 66cb09913a17b5fa16a6a396fd35a871 (MD5) Previous issue date: 2014-08-29 / The literature on analytical methods of accounting and corporate financial analysis models and cr edit indicators is large , and among the methods of credit risk classification is the classification model ratings, through which institutions classifie s customers according to their risk. However, the classical models of modeling credit risk using statisti cal techniques widely disseminated, as is the case of simple linear regression, the least squares method, among others. The quantile regression, evaluated in disseminated by Koenker and Basset (1978) has it as a main characteristic , analyzing the sample by the median and allow the analysis of subpopulations through the quantiles of the sample, which allows more specific inferences in according to the needs of the study. In recent years the concern with social and environmental issues have become increasing present in both the practical means and academia and in society in general, which brings up the idea of including the analysis of social indicators in environmental analysis credit, as already proposed in previous studies. However, the combined use of ec onomic, financial, social and environmental indicators, together with quantile regression, is an innovative proposal, and the subject of this academic study. This work is an exploratory and descriptive study , objective verify the possible contribution of t he inclusion of social and environmental variables, combined with the use of quantile regression for ratings classification and hence prediction of default. To fulfill this goal, we devel oped a database on panel, with the total of 561 observations, consist ing of data from publicly traded, its ratings, economic indicators, financial, social and environmental, the years 2007 to 2012 companies. With use of quantile regression was possible to infer that the social environmental variables are relevant for classi fication ratings and, consequently, to predict default. / A literatura a respeito de métodos de análise de indicadores co ntábeis e financeiros empresariais e modelos de análise de crédito é vasta, e dentre os métodos de classificação de risco de crédito, encontra - se o modelo de classificação de ratings , através do qual as instituições classificam seus clientes em função de s eu risco. Entretanto, os modelos clássicos de modelagem de risco de crédito se utilizam de técnicas estatísticas amplamente difundidas, como é o caso da regressão linear simples, método dos mínimos quadrados, entre outras. A regressão quantílica, estudada em difundida por Koenker e Basset (1978) tem como principal característica analisar a amostra através da mediana, e permitir a análise de subpopulações através dos quantis da amostra, o que permite realizar inferências mais específicas, de acordo com as ne cessidades do estudo. Nos últimos anos a preocupação com questões sociais e ambientais tem se tornado cada vez mais presente, tanto no meio prático quanto no meio acadêmico e na sociedade de maneira geral, o que traz à tona a ideia de incluir a análise de indicadores sócio ambientais na análise de crédito, como já foi proposto em estudos anteriores. No entanto, a utilização, de forma combinada, de indicadores econômicos, financeiros, sociais e ambientais, aliada à regressão quantílica, é uma proposta inovad ora, e o mote deste estudo acadêmico . Este trabalho exploratório, de natureza descritiva, objetiva verificar a possível contribuição da inclusão de variáveis sócio ambientais, aliada à utilização da regressão quantílica, para classificação de ratings e, consequentemente, previsão de default . Para cumprir tal objetivo foi desenvolvido um banco de dados em painel, com um total de 561 observações, formado por dados de empresas de capital aberto, seus ratings , indicadores econômicos, financeiros, sociais e ambi entais, dos anos de 2007 a 2012. Com a utilização da regressão quantílica foi possível inferir que as variáveis sócio ambientais são relevantes para a classificação de ratings e, consequentemente, para a previsão de default.

Page generated in 0.0831 seconds