• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TEMPERATURE AND PRECIPITATION CONTROLS OVER SOIL, LEAF AND ECOSYSTEM LEVEL CO2 FLUX ALONG A WOODY PLANT ENCROACHMENT GRADIENT

Barron-Gafford, Greg Alan January 2010 (has links)
Woody plant encroachment (WPE) into historic grasslands not only alters ecosystem structure but also yields a mosaic of vegetative growth-forms that differ in their inherent physiological capacities and physical attributes. C₃ plants tend to have a relatively broad range of temperature function but at the expensive of a lower optimum rate of photosynthesis. In contrast, C₄ grasses have a greater capacity for maximum uptake but across a relatively narrow range of temperatures. In considering which of these functional groups will outcompete the other within these regions undergoing WPE, one must account not only for these leaf physiological traits, but also the growth form induced differences in rooting depth, and therefore, potential access to deeper subsurface water. Laid upon these competitive interactions is an ever-changing environment, which for the semiarid southwestern US is predicted to become progressively warmer and characterized by highly variable precipitation with longer interstorm periods. In addition to aboveground changes in CO₂ assimilation, WPE influences soil nutrient, water, and carbon cycling. The objectives of this dissertation were to quantify: (1) the influence that temperature and available soil moisture have on regulating soil respiratory efflux within the microhabitats that results from WPE to estimate the influence this vegetative change will have on ecosystem CO₂ efflux; (2) the sensitivity of CO₂ uptake within grassland and woodland ecosystems to temperature and precipitation input in an effort to characterize how WPE might influence regional carbon and water balance; and (3) the role access to stable groundwater has in regulating the temperature sensitivity of ecosystems and their component fluxes. Major findings and contributions of this research include illustrating seasonal patterns of soil respiration within the microhabitats that result from WPE, such that an analysis of the relative contributions of these different components could be made. We found that soil respiration was not only consistently greater under mesquites, but that the relative contributions of these microhabitats varied significantly throughout the year, the duration of soil respiration after each rain was habitat-specific, and that the relationship between soil respiration and temperature followed a hysteretic pattern rather than a linear function (Appendix A). We found that a woodland ecosystem demonstrated a lower temperature sensitivity than a grassland across all seasonal periods of varying soil moisture availability, and that by maintaining physiological function across a wider range of temperatures throughout periods of limited precipitation, C₃ mesquites were acquiring large amounts of carbon while C₄ grasses were limited to functioning within a narrower range of temperatures (Appendix B). Finally, we found that having a connectivity to stable groundwater decoupled leaf and ecosystem scale temperature sensitivities relative to comparable sites lacking such access. Access to groundwater not only resulted in the temperature sensitivity of a riparian shrubland being nearly half that of the upland site throughout all seasonal periods, but also actual rates of net ecosystem productivity and leaf level rates of photosynthesis being dramatically enhanced (Appendix C).
2

Catchment Structure Regulates Hydrodynamic Drivers of Chemical Weathering in Shallow Forest Soils

Pennino, Amanda 12 June 2023 (has links)
Determining where, when, and how subsurface flow affects soil processes and the resulting arrangement of soil development along flow paths is challenging. While hydrologic regime and soil solution acidity are known to influence weathering rates and soil transformation processes, an integrated understanding of these factors together is still lacking. This dissertation explores the effects of subsurface flow on the mobility and distribution of dissolved organic carbon (DOC) and base cations to explain spatial patterns in chemical weathering in a forested headwater catchment. In the first chapter, relationships between hydrologic behavior, fluxes of weathered elements, and the extent of soil elemental loss across landscape positions are established. The second chapter investigates what specific groundwater behavior best explains spatial patterns in solution DOC concentrations during storm events. Lastly, in the third chapter, near surface saturation dynamics are examined to determine when and where DOC mobilization might be enhanced by subsurface flow. Results show that weathering extent was greatest in the upper reaches of the catchment, where O horizon saturation frequency and DOC concentrations are highest. Annual base cation fluxes, which were also greatest in these positions, could indicate where weathering is likely still enhanced. Additionally, while O horizon saturation occurred across the catchment, spatial differences in DOC concentrations suggest there are other sources of acidity to groundwater solutions other than just leaching from O horizons. Shallow organic soils, near bedrock outcrops at the top of the catchment is likely this additional C source, in which drainage water is transported downslope to nearby mineral soils when water tables are high and hydrologic connectivity between soils is increased. Spring and fall storm events were identified as times when groundwater most frequently reached O horizons during the snow-free year, providing insight into the timing of these processes throughout the year. This dissertation highlights how catchment structure mediates DOC flushing events, which in turn, influences the spatial architecture of soil development and chemical weathering processes across the landscape. / Doctor of Philosophy / This dissertation explores how the movement and chemistry of groundwater influences chemical weathering in forest soils. Chemical weathering is an important process in which rocks and soils are broken down into soil nutrients and water-soluble elements. The control of weathering processes by spatial and temporal differences in water behavior across landscapes is not well understood. To address these knowledge gaps, this dissertation measured groundwater fluctuations, solution chemistry, and nutrient fluxes across a mountainous forested landscape. Results from this work found that areas with more frequent flushing of organic matter-rich soil horizons increases groundwater acidity, which can enhance weathering processes. Flushing frequency of organic horizons and soil nutrient fluxes were greatest in the highest elevation portions of the landscape, where soils were most weathered (greatest loss of soil nutrients). This study revealed that flushing events occurred most frequently in spring and fall storm events during the snow-free year, shedding light on the when weathering might be most enhanced. Overall, this research demonstrates that topographic graphic position described differences in catchment groundwater behavior and solution acidity, which contributes to predictable patterns of weathering and soil development across the landscape.
3

Life on the Edge: Structural Analysis of Forest Edges to Aid Urban Management

Benjamin Zachary McCallister (11205411) 30 July 2021 (has links)
<div>The accelerating expansion of agricultural and urban areas fragments and degrades forests</div><div>and their capacity to provide essential ecosystem services while increasing physiological stress</div><div>and mortality rates of trees growing near forest edges. Previous studies have documented that</div><div>edges are hotter and drier than forest interiors and trees nearer the edge grow slower. However,</div><div>the physical structure of a forest’s canopy may serve to mitigate to these effects. This study</div><div>quantifies forest fragmentation across the Central Hardwoods Region (CHR; containing Missouri,</div><div>Illinois, and Indiana) and characterizes structural differences between the canopies of forest edges</div><div>and forest interiors. Importantly, we distinguish between edges that neighbor developed land and</div><div>agricultural lands since these landcover types may impose distinct effects on forest structure. We</div><div>characterized forest canopy structure in a subset of the CHR region using the 2016-2020 Indiana</div><div>3DEP Lidar Program data. Our findings indicate edge forest (forests within 30m of an edge) makes</div><div>up 29.8% of the total forest in our study extent, with urban and agricultural edges accounting for</div><div>17.8% and 72.8% of the edge edges in the region, respectively. Analysis of 15 separate structural</div><div>metrics derived from aerial laser scanning (ALS) showed no significant structural differences</div><div>between developed and agricultural edge canopies but did find differences between structure of</div><div>canopies in forest cores and those in forest edges of any kind. As developed and agricultural lands</div><div>increase so too will forest fragmentation and the creation of new forest edges. If there are no</div><div>significant differences between forest edge types, then we could begin to treat edges without</div><div>distinction. This could lead to simplified management practices for foresters and urban foresters</div><div>alike to protect and preserve forest fragments.</div>

Page generated in 0.0811 seconds