1 |
Short Cavity, Single-Frequency Edge-Emitting Laser with Fiber GratingLiu, Ching-Chen 10 July 2006 (has links)
Short cavity lasers have several advantages such as improved output linearity in comparison with long lasers, longitudinal oscillation mode stabilized against the injection level and the operating temperature, and large mode spacing for allowing single-mode operation. In this paper, a short cavity laser has been successfully fabricated.
The waveguides of laser diodes were formed by wet-etching with width of 4£gm. A SiO2 thin film was then sputtered onto the sample as surface passivation layer, after that, a PMGI polymer was spun on the sample and used for opening ridge window of metalization. After the SiO2 layers on the top of the ridge were removed, the metalizations were deposited for contact. The final finished laser was 200£gm long.
The turn on voltage of the laser diode is 0.8 V with total resistance of 9.8£[. In the CW operation, the threshold current of laser is 20mA with threshold voltage of 1.3V, reaching total output optical power of 8mW at 50mA and 12mW at 70mA. The small signal frequency response is 8GHz (current 70mA). By adopting fiber grating and circulator to filter the main mode, the side mode suppression ratio (SMSR) of single longitudinal mode is about 40dB, showing single mode operation.
|
2 |
Self-heating control of edge emitting and vertical cavity surface emitting lasersZhang, Yu 01 January 2014 (has links)
Self-heating leads to temperature rise of laser diode and limits the output power, efficiency and modulation bandwidth due to increased loss and decreased differential gain. The main heat sources in laser diode during continuous wave operation are Joule heating and free carrier absorption loss. To control device self-heating, the epi structure needs to be designed with low electrical resistance and low absorption loss, while the heat flux must spread out of the device efficiently. This dissertation presents the control of self-heating of both edge emitting laser diodes and vertical cavity surface emitting lasers (VCSELs). For the 980nm high power edge emitting laser, asymmetric waveguide is used for low free carrier absorption loss. The waveguide and cladding materials are optimized for high injection efficiency. BeO heatsink is applied to spread the heat efficiently. Injection efficiency of 71% and internal loss of 0.3 cm-1 have been achieved. A total output power of 9.3 W is measured from 0.5cm long device at 14.5A injection current. To further reduce the internal loss, the development of 980nm quantum dot active region is studied. Threshold current density as low as 59A/cm2 is reached. For the VCSELs, oxide-free structure is used to solve the self-heating problem of oxide VCSELs. Removing the oxide layer and using AlAs in the DBRs leads to record low thermal resistance. Optimization of the DBRs leads to low resistance and low free carrier absorption. Power conversion efficiency higher than 50% is achieved. To further reduce device voltage and heat generation, the development of intracavity contacts devices is introduced.
|
3 |
Simulation der Modendynamik von Fabry-Pérot-Laserdioden unter Berücksichtigung mikroskopischer EffekteKuhn, Eduard 28 November 2022 (has links)
In dieser Dissertation werden verschiedene Methoden zur Simulation der Dynamik der optischen Moden einer Fabry-Pérot-Laserdiode diskutiert. Experimentell lässt sich hierbei der Effekt des Modenrollens oder Modenhüpfens beobachten. Hier sind zu einem gegebenem Zeitpunkt nur ein oder zwei longitudinale Moden aktiv, dabei wechseln sich die Moden in einem bestimmten Wellenlängenbereich ab. Eine Erklärung für diesen Effekt sind Vibrationen der Ladungsträgerdichten in den aktiven Schichten bzw. den Quantenfilmen. So werden in der ersten betrachteten Methode die Ladungsträgerdichten bzw. die Besetzungsfunktionen zunächst als ortsabhängig betrachtet, um die Ladungsträger-Vibrationen direkt zu bestimmen. Bei diesem
Vorgehen wird eine hohe Rechenzeit benötigt, welche bei einer anderen Methode mithilfe eines effektiven Modenwechselwirkungsterms allerdings erheblich reduziert wird. Im ersten Teil dieser Arbeit wird gezeigt, dass diese beiden Methoden sehr ähnliche Ergebnisse liefern, außerdem wird der effektive Modenwechselwirkungsterm unter Berücksichtigung verschiedener Streuprozesse hergeleitet. Bei Strukturen mit mehreren Quantenfilmen oder größeren Stegbreiten spielt der Transport der Ladungsträger von den Kontakten zu den Quantenfilmen eine große Rolle, welcher in dieser Arbeit mithilfe der Drift-Diffusions-Gleichungen untersucht wird. Abschließend wird die Modendynamik mithilfe des Traveling-Wave-Modells simuliert. Im Gegensatz zu den bisher in dieser Arbeit verwendeten Methoden wird das optische Feld hierbei nicht mehr in die einzelnen Moden aufgeschlüsselt, sondern es wird partielle Differentialgleichung gelöst. / In this thesis different methods for the simulation of the mode dynamics in Fabry-Pérot laser diodes are discussed. These laser diodes show the effect of mode rolling, where the currently active longitudinal mode changes over time. This effect can be observed experimentally and can be explained by beating vibrations of
the carrier densities in the quantum wells. In the first method used in this work the location dependence of the carrier densities and the distribution functions is considered. This procedure requires a lot of computing time, which is significantly reduced in another method using an effective mode interaction term. In the
first part of this thesis it is shown that these two methods give very similar results, and the effective mode interaction term is derived taking into account various scattering processes. For structures with multiple quantum wells or broad ridge widths the transport of the charge carriers from the contacts to the quantum
wells is important, which is examined in this work using the Drift-diffusion equations. Finally, the mode dynamics is simulated using the traveling wave model. In contrast to the methods used so far in this work the optical field is no longer broken down into the individual modes, instead a partial differential equation is solved.
|
Page generated in 0.0876 seconds