• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 13
  • 10
  • Tagged with
  • 71
  • 71
  • 32
  • 28
  • 28
  • 28
  • 20
  • 18
  • 16
  • 13
  • 12
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Correlation between Interface Energetics of Molecular Semiconductors and Opto-Electronic Properties of Planar Organic Solar Cells / Der Zusammenhang zwischen der Energetik molekularer Halbleitergrenzflächen und den opto-elektronischen Eigenschaften planarer organischer Solarzellen

Brendel, Michael January 2017 (has links) (PDF)
It was the scope of this work to gain a deeper understanding of the correlation between Interface energetics of molecular semiconductors in planar organic solar cells and the corresponding optoelectronic characteristics. For this aim, different approaches were followed. At first, a direct variation of donor/acceptor (D/A) interface energetics of bilayer cells was achieved by utilizing systematically modified donor compounds. This change could be correlated to the macroscopic device performance. At second, the impact of interface energetics was illustrated, employing a more extended device architecture. By introducing a thin interlayer between a planar D/A heterojunction, an energetic staircase was established. Exciton dissociation in such devices could be linked to the cascade energy level alignment of the photo-active materials. Finally, two different fullerene molecules C60 and C70 were employed in co-evaporated acceptor phases. The expected discrepancy in their electronic structure was related to the transport properties of the corresponding organic photovoltaic cells (OPVCs). The fullerenes are created simultaneously in common synthesis procedures. Next to the photo-physical relevance, the study was carried-out to judge on the necessity of separating the components from each other by purification which constitutes the cost-determining step in the total production costs. / Es war das Ziel dieser Arbeit ein tieferes Verständnis für die Beziehung zwischen der Grenzflächenenergetik der molekularen Halbleiter planarer, organischer Solarzellen und den zugehörigen opto-elektronischen Bauteileigenschaften zu gewinnen. Für diesen Zweck wurden verschiedene Ansätze verfolgt. Einerseits wurde eine Veränderung der Donator/Akzeptor (D/A) Grenzflächenenergetik von Bilagen-Solarzellen durch die Verwendung verschieden fluorierter Donatorverbindungen erreicht. Andererseits wurde der Einfluss der Grenzflächenenergetik anhand einer geänderten Bauteilarchitektur aufgezeigt. Durch das Einbringen einer dünnen Schicht zwischen der D/A Heterogrenzfläche, wurde eine energetische Treppe realisiert. In diesen Solarzellen konnte die Exzitonendissoziation mit der Kaskaden-Energielevel-Anpassung der molekularen Halbleiter in Verbindung gebracht werden. Abschließend wurden zwei verschiedene Fullerenmoleküle in ko-verdampften Akzeptorphasen eingesetzt. Der vermeintliche Unterschied in ihrer elektronischen Struktur wurde mit den Transporteigenschaften der organischen photovoltaischen Zellen korreliert. Auf herkömmlichen Syntheserouten werden die Fullerene simultan generiert. Neben Gründen der photo-physikalischen Relevanz, wurde die Studie durchgeführt, um die Notwendigkeit der Trennung der Komponenten voneinander zu beurteilen, da dieser Aufreinigungsschritt der Kosten-bestimmende Prozess für die Gesamtmaterialkosten ist
2

Berührungslose Temperaturmessung an Gasen und keramisch beschichteten Oberflächen bei hohen Temperaturen / Non-contact temperature measurement of gases and ceramic coated surfaces

Zipf, Matthias January 2021 (has links) (PDF)
Stationäre Gasturbinen können von großer Bedeutung für die Verlangsamung des Klima-wandels und bei der Bewältigung der Energiewende sein. Für die Weiterentwicklung von Gasturbinen zu höheren Betriebstemperaturen und damit einhergehend zu höheren Wirkungs-graden werden berührungslose Messverfahren zur Ermittlung der Oberflächentemperatur von Turbinenschaufeln und der Gastemperatur der heißen Verbrennungsgase während des Be-triebs benötigt. Im Rahmen dieser Arbeit werden daher Methoden der berührungslosen Tem-peraturmessung unter Verwendung von Infrarotstrahlung untersucht. Die berührungslose Messung der Oberflächentemperatur moderner Turbinenschaufeln muss aufgrund derer infrarot-optischer Oberflächeneigenschaften im Wellenlängenbereich des mitt-leren Infrarots durchgeführt werden, in welchem die Turbinenbrenngase starke Absorptions-banden aufweisen. Zur Entwicklung eines adäquaten Strahlungsthermometers für diesen Zweck wurden im Rahmen dieser Arbeit daher durch Ermittlung von Transmissionsspektren von Kohlenstoffdioxid und Wasserdampf bei hohen Temperaturen und Drücken in einer ei-gens hierfür konstruierten Heißgas-Messzelle zunächst Wellenlängenbereiche identifiziert, in welchen die geplanten Messungen möglich sind. Anschließend wurde der Prototyp eines ent-sprechend konfigurierten Strahlungsthermometers im Zuge des Testlaufes einer vollskaligen Gasturbine erfolgreich erprobt. Weiterhin wurden im Rahmen dieser Arbeit zwei mögliche Verfahren zur berührungslosen Gastemperaturmessung untersucht. Das erste untersuchte Verfahren setzt ebenfalls auf Strah-lungsthermometrie. Dieses Verfahren sieht vor, aufgrund der Temperaturabhängigkeit des spektralen Transmissionsgrades in den Randbereichen von gesättigten Absorptionsbanden von Gasen aus der in diesen Bereichen transmittierten spektralen Strahldichte auf die Gastempera-tur zu schließen. Im Rahmen dieser Arbeit wurden Voruntersuchungen für dieses Tempera-turmessverfahren durchgeführt. So konnten auf der Grundlage von experimentell ermittelten Transmissionsspektren von Kohlenstoffdioxid bei Drücken zwischen 5 kPa und 600 kPa und Gastemperaturen zwischen Raumtemperatur und 1073 K für das geplante Verfahren nutzbare Wellenlängenintervalle insbesondere im Bereich der Kohlenstoffdioxid-Bande bei 4,26 µm identifiziert werden. Das zweite im Rahmen dieser Arbeit untersuchte Verfahren zur berührungslosen Gastem-peraturmessung basiert auf der Temperaturabhängigkeit der Wellenlängenposition der Trans-missionsminima der Absorptionsbanden von infrarot-aktiven Gasen. Im Hinblick darauf wur-de dieses Phänomen anhand von experimentell bestimmten hochaufgelösten Transmissions-spektren von Kohlenstoffdioxid überprüft. Weiterhin wurden mögliche Wellenlängenbereiche identifiziert und hinsichtlich ihrer Eignung für das geplante Verfahren charakterisiert. Als am vielversprechendsten erwiesen sich hierbei Teilbanden in den Bereichen um 2,7 µm und um 9,2 µm. Unter Beimischung von Stickstoff mit Partialdrücken von bis zu 390 kPa erwies sich zudem auch die Bande bei 4,26 µm als geeignet. Die im Rahmen dieser Arbeit experimentell ermittelten Transmissionsspektren konnten dar-über hinaus schließlich durch Vergleich mit entsprechenden HITRAN-Simulationen verifiziert werden. / Stationary gas turbines can be of significant importance for slowing down climate change and for the handling of the energy transition. The goal of the further development of gas tur-bines is to increase the operating temperatures and in consequence the efficiency factor. For this purpose, non-contact measurement methods are required to determine the surface temper-ature of turbine blades and the gas temperature of the hot combustion gases during operation. Therefore, methods of non-contact temperature measurement using infrared radiation are in-vestigated in this work. Due to the infrared-optical surface properties of modern turbine blades, non-contact tem-perature measurement has to be carried out in the mid-infrared wavelength range, where com-bustion gases of gas turbines have strong absorption bands. In order to develop an adequate radiation thermometer for this purpose, as a first step in this work, wavelength ranges were identified by determining the transmission spectra of carbon dioxide and water vapor at high temperatures and pressures in which the planned measurements are possible. Therefore, a spe-cial high-temperature high-pressure gas cell was developed. Then the prototype of a radiation thermometer, which was configured for measurements in the wavelength region identified before, was successfully tested in a full-scale gas turbine. Furthermore, two possible methods for non-contact gas temperature measurement were in-vestigated in the scope of this work. The first method examined also relies on radiation ther-mometry. Within this method, it is planned to obtain the gas temperature from the measure-ment of the spectral radiance that is transmitted in the wavelength region of the edge of a sat-urated absorption band of the gas, due to the temperature dependence of the spectral transmit-tance in this wavelength region. In this work, preliminary investigations for this temperature measurement method were carried out. Based on experimentally determined transmission spectra of carbon dioxide at pressures between 5 kPa and 600 kPa and at temperatures be-tween room temperature and 1073 K, wavelength intervals were identified that are suitable for the planned measurement method. Especially in the region of the carbon dioxide band at 4.26 µm, appropriate intervals could be found. The second method for non-contact gas temperature measurement investigated in this the-sis is based on the temperature dependence of the wavelength position of the transmission minima of the absorption bands of infrared-active gases. Therefore, this phenomenon was in-vestigated using experimentally determined high-resolution transmission spectra of carbon dioxide. Furthermore, suitable wavelength ranges with appropriate absorption bands were identified and characterized. The most promising sub-bands were found in the wavelength regions around 2.7 µm and 9.2 µm. Under addition of nitrogen with partial pressures up to 390 kPa, the carbon dioxide band at 4.26 µm also turned out to be suitable for the planned temperature measurement method. Finally, the experimentally gathered transmission spectra, which were obtained in the scope of this work, could be verified by a comparison with corresponding HITRAN-simulations.
3

The Photophysics of Small Organic Molecules for Novel Light Emitting Devices / Die Photophysik kleiner organischer Moleküle für innovative lichtemittierende Bauteile

Genheimer, Ulrich January 2023 (has links) (PDF)
This PhD thesis addresses the photophysics of selected small organic molecules with the purpose of using them for efficient and even novel light sources. In particular, the studies presented focused on revealing the underlying exciton dynamics and determining the transition rates between different molecular states. It was shown how the specific properties and mechanisms of light emission in fluorescent molecules, molecules with phosphorescence or thermally activated delayed fluorescence (TADF), biradicals, and multichromophores can be utilized to build novel light-emitting devices. The main tool employed here was the analysis of the emitters’ photon statistics, i.e. the analysis of the temporal distribution of emitted photons, during electrical or optical excitation. In the introduction of this work, the working principle of an organic light-emitting diode (OLED) was introduced, while Chapter 2 provided the physical background of the relevant properties of organic molecules and their interaction with light. In particular, the occurrence of discrete energy levels in organic semiconductors and the process of spontaneous light emission were discussed. Furthermore, in this chapter a mathematical formalism was elaborated with the goal to find out what kind of information about the studied molecule can be obtained by analyzing its photon statistics. It was deduced that the intensity correlation function g (2)(t) contains information about the first two factorial moments of the photon statistics and that higher order factorial moments do not contain any additional information about the system under study if the system is always in the same state after the emission of a photon. To conclude the introductory part, Chapter 3 introduced the utilized characterization methods including confocal microscopy of single molecules, time correlated single photon counting and temperature dependent photoluminescence measurements. To provide the background necessary for an understanding of for the following result chapters, in Section 4.1 a closer look was taken at the phenomenon of blinking and photobleaching of individual molecules. For a squaraine-based fluorescent emitter rapid switching between a bright and dark state was observed during photoexcitation. Using literature transition rates between the molecular states, a consistent model was developed that is able to explain the distribution of the residence times of the molecule in the bright and dark states. In particular, an exponential and a power-law probability distribution was measured for the time the molecule resides in tis bright and dark state, respectively. This behavior as well as the change in photoluminescence intensity between the two states was conclusively explained by diffusion of residual oxygen within the sample, which had been prepared in a nitrogen-filled glovebox. For subsequent samples of this work, thin strips of atomic aluminum were deposited on the matrices to serve as oxygen getter material. This not only suppressed the efficiency of photobleaching, but also noticeably prolonged the time prior to photobleaching, which made many of the following investigations possible in the first place. For emitters used in displays, emission properties such as narrow-band luminescence and short fluorescence lifetimes are desired. These properties can be influenced not only by the emitter molecule itself, but also by the interaction with the chosen environment. Therefore, before focusing on the photophysics of individual small organic molecules, Section 4.2 highlighted the interaction of a perylene bisimide-based molecular species with its local environment in a disordered polymethyl methacrylate matrix. In a statistical approach, individual photophysical properties were measured for 32 single molecules and correlations in the variation of the properties were analyzed. This revealed how the local polarity of the molecules’ environment influences their photophysics. In particular, it was shown how an increase in local polarity leads to a red-shifted emission, narrower emission lines, broader vibronic splitting between different emission lines in combination with a smaller Huang-Rhys parameter, and a longer fluorescence lifetime. In the future, these results may help to embed individual chromophores into larger macromolecules to provide the chromophore with the optimal local environment to exhibit the desired emission properties. The next two sections focused on a novel and promising class of chromophores, namely linear coordinated copper complexes, synthesized in the group of Dr. Andreas Steffen at the Institute of Inorganic Chemistry at the University of Würzburg. In copper atoms, the d-orbitals are fully occupied, which prevents undesirable metal-centered d-d⋆ states, which tend to lie low in energy and recombine non-radiatively. Simultaneously, the copper atom provides a flexible coordination geometry, while complexes in their linear form are expected to exhibit the least amount of excited state distortions. Depending on the chosen ligands, these copper complexes can exhibit phosphorescence as well as temperature activated delayed fluorescence. In Section 4.3, a phosphorescent copper complex with a chlorine atom and a 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-2-pyrrolidine-ylidene- ligand was tested for its suitability as an optically active material in an OLED. For this purpose, an OLED with a polyspirobifluorene-based copolymer matrix and the dopant at a concentration of 20 wt% was electrically excited. Deconvolution of the emission spectrum in contributions from the matrix and the dopant revealed that 60 % of the OLEDs emission was due to the copper complex. It was also shown that the shape of the emission spectrum of the copper complex remains unchanged upon incorporation into the OLED, but is red-shifted by about 233 meV. In Section 4.4, a second copper complex exhibiting thermally activated delayed fluorescence was analyzed. This complex comprised a carbazolate as well as a 2-(2,6- diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-ide ligand and was examined in the solid state and at the single-molecule level, where single photon emission was recorded up to an intensity of 78’000 counts per second. The evaluation of the second-order autocorrelation function of the emitted light proved an efficient transition between singlet and triplet excited states on the picosecond time scale. In the solid state, the temperature- dependent fluorescence decay of the complex was analyzed after pulsed photoexcitation in the temperature range between 300 K and 5 K. From these measurements, a small singlet-triplet energy gap of only 65 meV and a triplet sublevel splitting of 3.0 meV were derived. The transition rates between molecular states could also be determined. Here, the fast singlet decay time of τS1 = 9.8ns proved the efficient thermally activated delayed fluorescence process, which was demonstrated for the first time for this new class of copper(I) complexes thus. While the use of thermally activated delayed fluorescence is a potential way to harness otherwise long-living dark triplet states, radicals completely avoid dark triplet states. However, this usually comes with the huge drawback of the molecules being chemically unstable. Therefore, two chemically stable biradical species were synthesized in the framework of the DFG research training school GRK 2112 on Molecular biradicals: structure, properties and reactivity, by Yohei Hattori in the group of Prof. Dr. Christoph Lambert and Rodger Rausch in the group of Prof. Dr. Frank Würthner at the Institute of Organic Chemistry at the University of Würzburg, respectively. In Section 4.5, it was investigated how these molecules can be used in OLEDs. In the first isoindigo based biradical (6,6’-bis(3,5-di-tert-butyl-4-phenoxyl)-1,1’-bis(2- ethylhexyl)-[3,3’-biindolinyl-idene]-2,2’-dione) two tert-butyl moieties kinetically block chemical reactions at the place of the lone electrons and an electron-withdrawing core shifts the electron density into the center of the chromophore. With these properties, it was possible to realize a poly(p-phenylene vinylene) copolymer based OLED doped with the biradical and to observe luminescence during optical as well as electrical excitation. Analyzing shapes of the photo- and electroluminescence spectra at different doping concentrations, Förster resonance energy transfer was determined to be the dominant transition mechanism for excitons from the matrix to the biradical dopants. Likewise, OLEDs could be realized with the second diphenylmethylpyridine based birad- ical (4-(5-(bis(2,4,6-trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)-N-(4-(5-(bis(2,4,6- -trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)phenyl)-N-(4-methoxyphenyl)aniline) as dopant. In this biradical, chlorinated diphenylmethyl groups protect the two unpaired electrons. Photo- and electroluminescence spectra showed an emission in the near in- frared spectral range between 750 nm and 1000 nm. Also, Förster resonance energy trans- fer was the dominant energy transfer mechanism with an transfer efficiency close to 100 % even at doping concentrations of only 5 wt%. In addition to demonstrating the working OLEDs based in biradicals, the detection of luminescence of the two biradical species in devices also constitutes an important step toward making use of experimental techniques such as optically detected electron spin resonance, which could provide information about the electronic states of the emitter and their spin manifold during OLED operation. Another class of emitters studied are molecules in which several chromophores are co- valently linked to form a macrocyclic system. The properties of these multichromophores were highlighted in Section 4.6. Here, it was analyzed how the photophysical behavior of the molecules is affected by the covalent linking, which determines the interaction be- tween the chromophores. The first multichromophore, 2,2’-ditetracene, was synthesized by Lena Ross in the group of Prof. Dr. Anke Krüger at the Institute of Organic Chemistry at the University of Würzburg and was analyzed in this work both at the single-molecule level and in its aggregated crystalline form. While the single crystals were purified and grown in a vertical sublimation oven, the samples for the single molecule studies were prepared in matrices of amorphous polymethyl methacrylate and crystalline anthracene. Tetracene was analyzed concurrently to evaluate the effects of covalent linking. In samples where the distance between two molecules is sufficiently large, tetracene and 2,2’-ditracene show matching emission profiles with the only difference in the Franck-Condon factors and a de- creased photoluminescence decay time constant from 14 ns for tetracene to 5 ns for 2,2’- ditracene, which can be attributed to the increased density of the vibrational modes in 2,2’-ditracene. Evaluation of the photon statistics of individual 2,2’-ditracene molecules however showed that the system does not behave as two individual chromophores but as a collective state, preserving the spectral properties of the two tetracene chromophores. Complementary calculations performed by Marian Deutsch in the group of Prof. Dr. Bernd Engels at the Institute of Physical and Theoretical Chemistry at the University of Würzburg helped to understand the processes in the materials and could show that the electronic and vibronic modes of 2,2’-ditracene are superpositions of the modes occurring in tetracene. In contrast, single-crystalline 2,2’-ditetracene behaves significantly different than tetracene, namely exhibiting a red shift in photoluminescence of 150 meV, caused by an altered crys- talline packing that lowers the S1-state energy level. Temperature-dependent photolu- minescence measurements revealed a rich emission pattern from 2,2’-ditetracene single crystals. The mechanisms behind this were unraveled using photoluminescence lifetime density analysis in different spectral regions of the emission spectrum and at different tem- peratures. An excimer state was identified that is located about 5 meV below the S1-state, separated by a 1 meV barrier, and which can decay to the ground state with a time constant of 9 ns. Also, as the S1-state energy level is lowered below the E(S1) ≥ 2 ×E(T1) threshold, singlet fission is suppressed in 2,2’-ditetracene in contrast to tetracene. Therefore, at low temperatures, photoluminescence is enhanced by a factor of 46, which could make 2,2’- ditetracene a useful material for future applications in devices such as OLEDs or lasers. The second multichromophore species, para-xylylene bridged perylene bisimide macrocycles, were synthesized by Peter Spenst in the group of Prof. Dr. Frank Würthner at the Institute of Organic Chemistry at the University of Würzburg, by linking three and four perylene bisimides, respectively. To reveal the exciton dynamics in these macrocycles, highly diluted monomers as well as trimers and tetramers were doped into matrices of polymethyl methacrylate to create thin films in which individual macrocycles could be analyzed. The emission spectra of the macrocycles remained identical to those of the monomers, indicating weak coupling between the chromophores. Single photon emission could be verified for monomers as well as macrocycles, as exciton-exciton annihilation processes suppress the simultaneous emission of two photons from one macrocycle. Nevertheless, the proof of the occurrence of a doubly excited state was obtained by excitation power dependent photon statistics measurements. The formalism developed in the theory part of this thesis for calculating the photon statistics of multichromophore systems was used here to find a theoretical model that matches the experimental results. The main features of this model are a doubly excited state, fast singlet-singlet annihilation, and an efficient transition from the doubly excited state to a dark triplet state. The occurrence of triplet-triplet annihilation was demonstrated in a subsequent experiment in which the macrocycles were excited at a laser intensity well above the saturation intensity of the monomer species. In contrast to the monomers, the trimers and tetramers exhibited neither a complete dark state nor saturation of photoluminescence. Both processes, efficient singlet-singlet and triplet-triplet annihilation make perylene bisimide macrocycles exceptionally bright single photon emitters. These advantages were utilized to realize a room temperature electrically driven fluorescent single photon source. For this purpose, OLEDs were fabricated using polyvinylcarbazole and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol blends as a host material for perylene bisimide trimers. Photon antibunching could be observed in both optically and electrically driven devices, representing the first demonstration of electrically driven single photon sources using fluorescent emitters at room temperature. As expected from the previous optical experiments, the electroluminescence of the molecules was exceptionally bright, emitting about 105 photons per second, which could be seen even by eye under the microscope. Finally, in the last section 4.7 of this thesis, two additional measurement schemes were proposed as an alternative to the measurement of the second-order correlation function g (2)(t) of single molecules, which only provides information about the first two factorial moments of the molecules’ photon statistics. In the first scheme, the g (3)(t) function was measured with three photodiodes, which is a consequential extension of the Hanbury Brown and Twiss measurement with two photodiodes. It was demonstrated how measuring the g (3)(t) function is able to identify interfering emitters with non-Poisson statistics in the experiment. The second setup was designed with an electro-optic modulator that repeatedly gen- erates photoexcitation in the form of a step function. The recording of luminescence transients for different excitation intensities yields the same results as the correspond- ing g (2)-functions measured on single emitters, both in their shape and in their depen- dence on excitation power. To demonstrate this concept, the TADF emitter TXO-TPA (2- [4-(diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) was doped at a concen- tration of 10−4 wt% in a mCP (1,3-Bis(N-carbazolyl)benzene) matrix. This concentration was low enough that TXO-TPA molecules did not interact with each other, but an ensem- ble of molecules was still present in the detection volume. The intramolecular transition rates between singlet and triplet states of TXO-TPA could be derived with an error of at most 5 %. Other experimental techniques designed to obtain this information require ei- ther lengthy measurements on single molecules, where sample preparation is also often a challenge, or temperature-dependent fluorescence lifetime measurements, which require a cryostat, which in turn places constraints on the sample design used. In future, this ap- proach could establish a powerful method to study external factors influencing molecular transition rates. Overall, this thesis has introduced new molecular materials, revealed their photophys- ical properties, and demonstrated how they can be used to fabricate efficient and even novel light sources. / Diese Dissertation befasst sich mit der Photophysik ausgewählter kleiner organischer Mo- leküle mit dem Ziel, diese für effiziente und sogar neuartige Lichtquellen zu nutzen. Die vorgestellten Studien konzentrierten sich insbesondere darauf, die zugrunde liegende Ex- zitonendynamiken offenzulegen und die Übergangsraten zwischen verschiedenen mole- kularen Zuständen zu bestimmen. Es wurde gezeigt, wie die spezifischen Eigenschaften und Mechanismen der Lichtemission in fluoreszierenden Molekülen, Molekülen mit Phos- phoreszenz oder thermisch aktivierter verzögerter Fluoreszenz (TADF), Biradikalen und Multichromophoren genutzt werden können, um neuartige lichtemittierende Bauelemen- te herzustellen. Das wichtigste Instrument, das dabei zum Einsatz kam, war die Analyse der Photonenstatistik der Emitter, d. h. die Analyse der zeitlichen Verteilung der emittier- ten Photonen während der elektrischen oder optischen Anregung. In der Einleitung dieser Arbeit wurde das Funktionsprinzip organischer Leuchtdioden (OLED) vorgestellt, während in Kapitel 2 der physikalische Hintergrund relevanter Eigen- schaften organischer Moleküle, des Lichts und ihrer Wechselwirkung miteinander behan- delt wurde. Insbesondere wurden das Auftreten von diskreten Energieniveaus in organi- schen Halbleitern und der Prozess der spontanen Lichtemission erörtert. Darüber hinaus wurde in diesem Kapitel ein mathematischer Formalismus ausgearbeitet, um herauszufin- den, welche Informationen über das untersuchte Molekül durch die Analyse seiner Photo- nenstatistik gewonnen werden können. Es wurde mathematisch gezeigt, dass die Inten- sitätskorrelationsfunktion g (2)(t) Informationen über die ersten beiden faktoriellen Mo- mente der Photonenstatistik enthält und faktorielle Momente höherer Ordnung keine zu- sätzlichen Informationen über das untersuchte System enthalten, wenn sich das System nach der Emission eines Photons immer im gleichen Zustand befindet. Zum Abschluss des Grundlagenteil dieser Arbeit wurden in Kapitel 3 die verwendeten Charakterisierungs- methoden vorgestellt, darunter die konfokale Mikroskopie einzelner Moleküle, die zeitkor- relierte Einzelphotonenzählung und temperaturabhängige Photolumineszenzmessungen. Um den für das Verständnis der folgenden Ergebniskapitel notwendigen Hintergrund zu schaffen, wurde in Abschnitt 4.1 die Phänomene des Photoblinkens und des Photo- bleichens einzelner Moleküle näher betrachtet. Bei einem Squarain-basierten fluoreszierenden Emitter wurde während der Photoanregung ein schneller Wechsel zwischen ei- nem hellen und einem dunklen Zustand beobachtet. Anhand von Übergangsraten zwi- schen den Molekülzuständen, die aus der Literatur bekannt sind, wurde ein konsisten- tes Modell vorgestellt, das die Verteilung der Verweilzeiten des Moleküls in den hellen und dunklen Zuständen erklären kann. Insbesondere wurde eine Exponential- und eine Potenzgesetz-Wahrscheinlichkeitsverteilung für die Zeit gemessen, die das Molekül im hel- len bzw. dunklen Zustand verweilte. Dieses Verhalten sowie der Wechsel der Photolumi- neszenzintensität zwischen den beiden Zuständen wurde schlüssig durch diffundierenden Restsauerstoff in der Probe erklärt, die in einer mit Stickstoff gefüllten Glovebox hergestellt worden war. Auf die organischen Gast-Wirts-Filme der nachfolgenden Proben dieser Ar- beit wurden dünne Streifen aus Aluminium aufgebracht, die als Sauerstoffgetter dienten. Dadurch wurde nicht nur der Effekt des Photobleichens unterdrückt, sondern auch die Zeit bis zu diesem deutlich verlängert, was viele der folgenden Untersuchungen überhaupt erst möglich machte. Für Emitter, die in Displays verwendet werden, sind Emissionseigenschaften wie schmalbandige Lumineszenz und kurze Fluoreszenzlebensdauern wünschenswert. Diese Eigenschaften können nicht nur durch das Emittermolekül selbst, sondern auch durch die Wechselwirkung mit der Umgebung beeinflusst werden. Bevor der Fokus auf die Photophysik einzelner kleiner organischer Moleküle gelegt wurde, wurde daher in Abschnitt 4.2 die Wechselwirkung einer molekularen Spezies auf Perylenbisimid- Basis mit ihrer lokalen Umgebung in einer ungeordneten Polymethylmethacrylatmatrix untersucht. In einem statistischen Ansatz wurden individuelle photophysikalische Eigenschaften für 32 einzelne Moleküle gemessen und Korrelationen in der Variation dieser Merkmale analysiert. Dadurch wurde deutlich, wie die lokale Polarität der Umgebung der Moleküle deren Photophysik beeinflusst. Insbesondere wurde gezeigt, wie eine Erhöhung der lokalen Polarität zu einer rotverschobenen Emission, schmaleren Emissionslinien, einer breiteren vibronischen Aufspaltung zwischen verschiedenen Emissionslinien in Kombination mit einem kleineren Huang-Rhys-Parameter und einer längeren Fluoreszenzlebensdauer führt. In Zukunft könnten diese Ergebnisse dazu beitragen, einzelne Chromophore in größere Makromoleküle einzubetten, um dem Chromophor die optimale lokale Umgebung zu bieten, damit es die gewünschten Emissionseigenschaften aufweist. Die nächsten beiden Abschnitte widmeten sich einer innovativen und vielversprech- enden Klasse von Chromophoren, linear koordinierten Kupferkomplexen, die in der Gruppe von Dr. Andreas Steffen am Institut für Anorganische Chemie der Universität Würzburg synthetisiert wurden. Bei Kupferatomen sind die d-Orbitale vollständig besetzt, was unerwünschte metallzentrierte d-d⋆-Zustände verhindert, die in der Regel eine niedrige Energie besitzen und nicht strahlend rekombinieren. Gleichzeitig bietet das Kupferatom eine flexible Koordinationsgeometrie, und es wird erwartet, dass Komplexe in ihrer linearen Form die geringsten Molekülverformung nach optischer Anregung erfahren. Je nach Wahl der Liganden können diese Kupferkomplexe sowohl Phosphoreszenz als auch temperaturaktivierte verzögerte Fluoreszenz zeigen. In Abschnitt 4.3 wurde ein phosphoreszierender Kupferkomplex mit einem Chloratom und einem 1-(2,6- Diisopropylphenyl)-3,3,5,5-Tetramethyl-2-pyrrolidin-yliden-Liganden auf seine Eignung als optisch aktives Material in einer OLED untersucht. Zu diesem Zweck wurde eine OLED mit einer auf Polyspirobisfluoren basierenden Copolymermatrix und dem Dotant in einer Konzentration von 20 wt% elektrisch angeregt. Die Entfaltung des Emissionsspektrums in Beiträge der Matrix und des Dotanten ergab, dass 60 % der OLED-Emission auf den Kupferkomplex zurückzuführen war. Außerdem wurde gezeigt, dass die Form des Emissionsspektrums des Kupferkomplexes beim Einbau in die OLED unverändert bleibt, aber um etwa 233 meV rot verschoben ist. In Abschnitt 4.4 wurde ein zweiter Kupferkomplex analysiert, der eine thermisch aktivierte verzögerte Fluoreszenz (TAFD) aufweist. Dieser Komplex besteht aus einem Carbazolat sowie einem 2-(2,6-Diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-id- Liganden und wurde als Festkörper und auf Einzelmolekülebene untersucht, wobei eine Einzelphotonenemission bis zu einer Intensität von 78.000 Photonen pro Sekunde gemessen wurde. Die Auswertung der Autokorrelationsfunktion zweiter Ordnung des emittierten Lichts belegt einen effizienten Übergang zwischen den angeregten Singulett- und Triplett-Zuständen auf der Pikosekunden-Zeitskala. Im Festkörper wurde der temperaturabhängige Fluoreszenzabfall des Komplexes nach gepulster Photoanregung im Temperaturbereich zwischen 300 K und 5 K untersucht. Aus diesen Messungen wurde eine kleine Singulett-Triplett-Energielücke von nur 65 meV und eine Triplett-Subniveau- Aufspaltung von 3.0 meV ermittelt. Die Übergangsraten zwischen den entsprechenden molekularen Zuständen konnten ebenfalls bestimmt werden. Die schnelle Singulett- Zerfallszeit von τS1 = 9.8ns konnte den effizienten thermisch aktivierten verzögerten Fluoreszenzprozess zugeordnet werden, der somit erstmals für diese neue Klasse der Kupfer(I)-Komplexe nachgewiesen wurde. Während die thermisch aktivierte verzögerte Fluoreszenz eine elegante Möglichkeit ist, ansonsten dunkle Triplettzustände für die strahlende Emission zu nutzen, vermeiden Radikale Molekülspezies dunkle Triplettzustände vollständig. Dies hat jedoch in der Regel den großen Nachteil, dass die Moleküle chemisch instabil sind. Daher wurden im Rahmen des DFG-Graduiertenkollegs GRK 2112 Molecular biradicals: structure, properties and reactivity von Yohei Hattori aus der Arbeitsgruppe von Prof. Dr. Christoph Lambert und Rodger Rausch aus der Arbeitsgruppe von Prof. Dr. Frank Würthner am Institut für Organischen Chemie an der Universität Würzburg zwei chemisch stabile Radikal-Spezies synthetisiert. In Abschnitt 4.5 wurde untersucht, wie diese Moleküle in OLEDs verwendet werden können. Im ersten Biradikal auf Isoindigo-Basis (6,6’-Bis(3,5-di-tert-butyl-4-phenoxyl)-1,1’- bis(2-ethylhexyl)-[3,3’-biindolinyl-iden]-2,2’-dion) blockieren zwei tert-Butyl-Einheiten sterisch chemische Reaktionen an der Stelle des ungepaarten Elektrons und ein elek- tronenziehender Kern verschiebt die Elektronendichte ins Zentrum des Chromophors. Mit diesen Eigenschaften war es möglich, eine mit dem Biradikal dotierte OLED auf Basis eines Poly(p-phenylenvinylen)-Copolymers zu realisieren und Lumineszenz sowohl unter optischer als auch unter elektrischer Anregung zu beobachten. Die Analyse der Formen der Photo- und Elektrolumineszenzspektren bei unterschiedli- chen Dotierungskonzentrationen ergab, dass der Förster-Resonanz-Energietransfer der dominierende Übergangsmechanismus für Exzitonen von der Matrix auf die bi- radikalischen Dotierstoffe ist. Ebenso konnten OLEDs mit dem zweiten Biradikal auf Diphenylmethylpyridinbasis (4-(5-(Bis(2,4,6-trichlorphenyl)methyl)-4,6-dichlorpyridin- 2-yl)-N-(4-(5-(Bis(2,4,6-trichlorphenyl)methyl)-4,6-dichlorpyridin-2-yl)phenyl)-N-(4- methoxyphenyl)anilin) als Dotierstoff realisiert werden. In diesem Biradikal schützen chlorierte Diphenylmethylgruppen die beiden ungepaarten Elektronen. Die Photo- und Elektrolumineszenzspektren zeigten eine Emission im nahen Infrarotbereich zwischen 750 nm und 1000 nm. Ebenso war der Försterresonanz-Energietransfer der dominieren- de Energietransfermechanismus mit einer Transfereffizienz von nahezu 100 %, selbst bei Dotierungskonzentrationen von etwa 5 wt%. Neben der Demonstration funktionie- render OLEDs auf der Basis von Biradikalen stellt der Nachweis der Lumineszenz der beiden Biradikal-Spezies in den Bauteilen auch einen wichtigen Schritt zur Nutzung experimenteller Techniken wie der optisch detektierten Elektronenspinresonanz dar, die komplementäre Informationen über die elektronischen Zustände der Emitters und deren Spin-Verteilung während des OLED-Betriebs liefern können. Eine weitere untersuchte Klasse von Emittern sind Moleküle, bei denen mehrere Chro- mophore kovalent zu einem molekularen System verbunden sind. Die Eigenschaften die- ser Multichromophore wurden in Abschnitt 4.6 analysiert. Dabei wurde untersucht, wie das photophysikalische Verhalten der Moleküle durch die kovalente Bindung beeinflusst wird, welche maßgeblich die Wechselwirkung zwischen den Chromophoren bestimmt. Das erste Multichromophor, 2,2’-Ditetracen, wurde von Lena Ross in der Gruppe von Prof. Dr. Anke Krüger am Institut für Organischen Chemie an der Universität Würzburg synthetisiert und in dieser Arbeit sowohl auf Einzelmolekülebene als auch in seiner kristallinen Form analysiert. Während die Einkristalle in einem vertikalen Sublimationsofen aufgerei- nigt und gewachsen wurden, wurden die Proben für die Einzelmolekülstudien an Matrizen von Polymethylmethacrylat und kristallinem Anthracen präpariert. Simultan wurde Tetra- cen analysiert, um die Auswirkungen der kovalenten Bindung beurteilen zu können. In Proben, bei denen der Abstand zwischen zwei Gastmolekülen ausreichend groß ist, zeigen Tetracen und 2,2’-Ditracen übereinstimmende Emissionsprofile mit lediglich veränderten Franck-Condon-Faktoren und einer verringerten Photolumineszenz-Abklingzeitkonstante von 14 ns für Tetracen auf 5 ns für 2,2’-Ditracen, was auf die erhöhte Dichte der Schwin- gungsmoden in 2,2’-Ditracen zurückgeführt werden kann. Die Auswertung der Photonen- statistiken der einzelnen 2,2’-Ditracen-Moleküle zeigte, dass sich das System erwartungs- gemäß nicht wie zwei einzelne Chromophore verhält, sondern wie ein kollektiver Zustand, der jedoch die spektralen Eigenschaften der beiden Tetracen-Chromophore beibehält. Er- gänzende Berechnungen, die von Marian Deutsch in der Gruppe von Prof. Dr. Bernd Engels am Institut für Physikalische und Theoretische Chemie an der Universität Würzburg durch- geführt wurden, halfen, die Prozesse in den Materialien zu verstehen und konnten zei- gen, dass die elektronischen und vibronischen Moden von 2,2’-Ditracen eine Superpo- sition der Moden in Tetracen sind. Im Gegensatz dazu unterscheidet sich einkristallines 2,2’-Ditetracen von Tetracen. So weist es eine Rotverschiebung der Photolumineszenz von 150 meV auf, die durch eine veränderte kristalline Packung verursacht wird, die das Ener- gieniveau des S1-Zustands absenkt. Temperaturabhängige Photolumineszenzmessungen zeigten ein reichhaltiges Emissionsmuster von 2,2’-Ditetracen-Einkristallen. Die zugrun- de liegenden Mechanismen wurden mithilfe der Analyse von Photolumineszenz-Lebens- dauern in verschiedenen Spektralbereichen des Emissionsspektrums und bei unterschied- lichen Temperaturen ermittelt. Es wurde ein Excimer-Zustand identifiziert, der sich etwa 5 meV unterhalb des S1-Zustands befindet, der durch eine 1 meV-Barriere von diesem ge- trennt ist und der mit einer Zeitkonstante von 9 ns in den Grundzustand zerfallen kann. Außerdem wird die Singulett-Aufspaltung in 2,2’-Ditetracen im Gegensatz zu Tetracen un- terdrückt, da das Energieniveau des S1-Zustands unter die Schwelle von E(S1) ≥ 2×E(T1) abgesenkt wird. Folglich wird die Photolumineszenz bei niedrigen Temperaturen um einen Faktor von bis zu 46 verstärkt, was 2,2’-Ditetracen zu einem nützlichen Material für zu- künftige Anwendungen in Geräten wie OLEDs oder Lasern machen könnte. Die zweite multichromophore Spezies, para-Xylylen-verbundene Perylenbisimid-Makro- zyklen, wurden von Peter Spenst in der Gruppe von Prof. Dr. Frank Würthner am Institut der Organischen Chemie an der Universität Würzburg synthetisiert, indem drei bzw. vier Perylenbisimide miteinander verknüpft wurden. Um die Exzitonendynamik in diesen Makrozyklen zu untersuchen, wurden stark verdünnte Monomere sowie Trimere und Tetra- mere in Matrizen aus Polymethylmethacrylat mit sehr niedriger Konzentration dotiert, um dünne Filme zu erzeugen, in denen individuelle Makrozyklen analysiert werden konnten. Die Emissionsspektren der Makrozyklen blieb identisch zu denen der Monomere, was auf eine schwache Kopplung zwischen den Chromophoren hindeutet. Die Emission einzel- ner Photonen konnte sowohl für Monomere als auch für Makrozyklen nachgewiesen wer- den, da Exziton-Exziton-Annihilationsprozesse die gleichzeitige Emission von zwei Photo- nen aus einem Makromolkül unterdrücken. Der Nachweis eines doppelt angeregten Zu- stands wurde durch Messungen der von der Anregungsleistung abhängigen Photonensta- tistik erbracht. Der im theoretischen Teil dieser Arbeit entwickelte Formalismus zur Be- rechnung der Photonenstatistik von multichromophoren Systemen wurde hier verwendet, um ein theoretisches Modell zu finden, das mit den experimentellen Ergebnissen überein- stimmt. Die wichtigsten Merkmale dieses Modells sind ein doppelt angeregter Zustand, eine schnelle Singulett-Singulett-Annihilation und ein effizienter Übergang vom doppelt angeregten Zustand in einen dunklen Triplett-Zustand. Das Auftreten der Triplett-Triplett- Annihilation wurde in einem anschließenden Experiment nachgewiesen, bei dem die Ma- krozyklen mit einer Laserintensität angeregt wurden, die deutlich über der Sättigungsin- tensität der Monomerspezies lag. Im Gegensatz zu den Monomeren wiesen die Trimere und Tetramere weder einen vollständig dunklen Zustand noch eine Sättigung der Photolu- mineszenz auf. Beide Prozesse, Singulett-Singulett- und Triplett-Triplett-Annihilation, ma- chen Perylenbisimid-Makrozyklen zu außergewöhnlich hellen Einzelphotonen-Emittern. Diese Vorteile wurden genutzt, um eine elektrisch betriebene Einzelphotonenquelle bei Raumtemperatur zu realisieren. Zu diesem Zweck wurden OLEDs unter Verwendung von Polyvinylcarbazol und 2-tert-Butylphenyl-5-biphenyl-1,3,4-oxadiazol als Wirtsmaterialien für Perylenbisimid-Trimere hergestellt. Photonen-Antibunching konnte sowohl in optisch als auch in elektrisch betriebenen OLEDs beobachtet werden, was die erste Demonstrati- on von elektrisch betriebenen Einzelphotonenquellen mit fluoreszierenden Emittern bei Raumtemperatur darstellt. Wie aufgrund der vorangegangenen optischen Experimente zu erwarten war, war die Elektrolumineszenz der Moleküle außergewöhnlich hell und wies et- wa 105 Photonen pro Sekunde auf, so dass die Einzelemitteremission sogar mit dem Auge unter dem Mikroskop gesehen werden konnten. Im letzten Abschnitt 4.7 dieser Dissertation wurden schließlich zwei zusätzliche Messverfahren als Alternative zur Messung der Korrelationsfunktion zweiter Ordnung g (2)(t) einzelner Moleküle vorgeschlagen, da die g (2)(t)-Funktion nur Informationen über die ersten beiden faktoriellen Momente der Photonenstatistik der Moleküle liefert. In einem ersten Ansatz wurde die g (3)(t)-Funktion mit drei Photodioden gemessen, was eine logische Erweiterung der Messung nach Hanbury Brown und Twiss mit zwei Photodioden darstellt. Hierbei wurde gezeigt, wie die Messung der g (3)(t)-Funktion in der Lage ist, störende Emitter mit Nicht-Poisson-Statistik im Experiment zu identifizieren. Das zweite Messverfahren ist mit einem elektro-optischen Modulator ausgestattet, der wiederholt Photoanregungen in Form einer Stufenfunktion ermöglicht. Die Aufzeichnung von Lumineszenz-Transienten für verschiedene Anregungsintensitäten erzeugt am mole- kularen Ensemble die gleichen Ergebnisse wie g (2)(t)-Messungen, die an Einzelemittern durchgeführt wurden, sowohl in ihrer Form als auch in ihrer Abhängigkeit von der Anre- gungsleistung. Zur Demonstration dieses Konzepts wurde der TADF-Emitter TXO-TPA (2- [4-(Diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) in einer Konzentration von 10−4 wt% mit einer mCP (1,3-Bis(N-carbazolyl)benzol)-Matrix gemischt. Diese Kon- zentration war gering genug, dass die TXO-TPA-Moleküle nicht miteinander wechselwirk- ten, aber dennoch ein Ensemble von Molekülen im Detektionsvolumen vorhanden war. Die intramolekularen Übergangsraten zwischen Singulett- und Triplett-Zuständen von TXO-TPA konnten mit einem Fehler von nur 5 % abgeleitet werden. Andere experimen- telle Techniken, mit denen diese Informationen gewöhnlich gewonnen werden, erfordern entweder langwierige Messungen an einzelnen Molekülen, bei denen die Probenvorberei- tung oft eine Herausforderung darstellt, oder temperaturabhängige Messungen der Fluo- reszenzlebensdauer, für die ein Kryostat erforderlich ist, was wiederum Anforderungen an das verwendete Probendesign stellt. In Zukunft könnte dieser Ansatz eine nützliche Me- thode darstellen, um externer Faktoren, die die molekularen Übergangsraten beeinflussen, zu bestimmen und zu quantifizieren. Insgesamt wurden in dieser Arbeit neue molekulare Materialien vorgestellt, ihre photophysikalischen Eigenschaften offengelegt und demonstriert, wie sie zur Herstellung effizienter und sogar neuartiger Lichtquellen verwendet werden können.
4

Festkörperbasierte Einzelphotonenquellen als Grundbausteine der Quanteninformationstechnologie / Solid-state single photon sources as building blocks for the quantum information technology

Unsleber, Sebastian Philipp January 2016 (has links) (PDF)
Die vorliegende Arbeit hatte das Ziel basierend auf Halbleiternanostrukturen eine effiziente und skalierbare Quelle einzelner und ununterscheidbarer Photonen zu entwickeln. Dies ist eine Basiskomponente von zukünftigen quantenphysikalischen Anwendungen wie der Quantenkommunikation oder dem Quantencomputer. Diese Konzepte nutzen gezielt quantenmechanische Systeme um einerseits Kommunikation absolut abhörsicher zu machen oder um neuartige Computer zu konstruieren, die bestimmte Aufgaben - wie die Produktzerlegung großer Zahlen - effizienter lösen als heutige Systeme. Ein mögliche Realisierung der Quantenkommunikation ist beispielsweise die Schlüsselverteilung zwischen zwei Parteien durch Verwendung des BB84-Protokolls. Dazu wird eine Lichtquelle benötigt, welche die physikalisch kleinstmögliche Lichtmenge - ein einzelnes Photon - aussendet. Der Kommunikationskanal wird dann über verschiedene Polarisationszustände dieser Photonen gegen ein Abhören nach außen hin abgesichert. Da die maximale Kommunikationsdistanz aufgrund von Verlusten im Quantenkanal beschränkt ist, muss das Signal für größere Distanzen mit Hilfe eines sog. Quantenrepeaters aufbereitet werden. Ein solcher kann ebenfalls unter Verwendung von Einzelphotonenquellen realisiert werden. Das Konzept des Quantenverstärkers stellt aber die zusätzliche Anforderung an die Einzelphotonenquelle, dass die ausgesendeten Lichtteilchen in der Summe ihrer Eigenschaften wie Energie und Polarisation immer gleich und somit ununterscheidbar sein müssen. Auf Basis solcher ununterscheidbarer Photonen gibt es zudem mit dem linear optischen Quantenrechner auch mögliche theoretische Ansätze zur Realisierung eines Quantencomputers. Dabei kann über die Quanteninterferenz von ununterscheidbaren Photonen an optischen Bauteilen wie Strahlteilern ein Quanten-NOT-Gatter zur Berechnung spezieller Algorithmen realisiert werden. Als vielversprechende Kandidaten für eine solche Lichtquelle einzelner Photonen haben sich in den letzten Jahren Halbleiter-Quantenpunkte herauskristallisiert. Dank des festkörperbasierten Ansatzes können diese Strukturen in komplexe photonische Umgebungen zur Erhöhung der Photonen-Extraktionseffizienz und -Emissionsrate eingebettet werden. Ziel dieser Arbeit war somit eine effiziente Quelle einzelner ununterscheidbarer Photonen zu realisieren. Im Hinblick auf die spätere Anwendbarkeit wurde der Fokus zudem auf die skalierbare bzw. deterministische Fabrikation der Quantenpunkt-Strukturen gelegt und zwei technologische Ansätze - die kryogene in-situ-Lithographie und das positionierte Wachstum von Quantenpunkten - untersucht. Im ersten experimentellen Kapitel dieser Arbeit wird ein neuartiges Materialsystem vorgestellt, welches sich zur Generation einzelner Photonen eignet. Es können spektral scharfe Emissionslinien mit Linienbreiten bis knapp über 50 µeV aus Al$_{0,48}$In$_{0,52}$As Volumenmaterial beobachtet werden, wenn diese Schicht auf InP(111) Substraten abgeschieden wird. In Querschnitt-Rastertunnelmikroskopie-Messungen wurden ca. 16 nm große Cluster, welche eine um ungefähr 7 % höhere Indiumkonzentration im Vergleich zur nominellen Zusammensetzung des Volumenmaterials besitzen, gefunden. Über die Simulation dieser Strukturen konnten diese als Quelle der spektral scharfen Emissionslinien identifiziert werden. Zudem wurde mittels Auto- und Kreuzkorrelationsmessungen nachgewiesen, dass diese Nanocluster einzelne Photonen emittieren und verschieden geladene exzitonische und biexzitonische Ladungsträgerkomplexe binden können. Anschließend wurde der Fokus auf InGaAs-Quantenpunkte gelegt und zunächst im Rahmen einer experimentellen und theoretischen Gemeinschaftsarbeit die Kohärenzeigenschaften eines gekoppelten Quantenpunkt-Mikrokavität-Systems untersucht. Über temperaturabhängige Zwei-Photonen Interferenz Messungen und dem Vergleich mit einem mikroskopischen Modell des Systems konnten gezielt die Bestandteile der Quantenpunkt-Dephasierung extrahiert werden. Auf diesen Ergebnissen aufbauend wurde die gepulste, strikt resonante Anregung von Quantenpunkten als experimentelle Schlüsseltechnik etabliert. Damit konnten bei tiefen Temperaturen nahezu vollständig ununterscheidbare Photonen durch eine Zwei-Photonen Interferenz Visibilität von über 98 % nachgewiesen werden. Für ein skalierbares und deterministisches Quantenpunkt-Bauelement ist entweder die Kontrolle über die Position an welcher der Quantenpunkt gewachsen wird nötig, oder die Position an der eine Mikrokavität geätzt wird muss auf die Position eines selbstorganisiert gewachsenen Quantenpunktes abgestimmt werden. Im weiteren Verlauf werden Untersuchungen an beiden technologischen Ansätzen durchgeführt. Zunächst wurde der Fokus auf positionierte Quantenpunkte gelegt. Mittels in das Substrat geätzter Nanolöcher wird der Ort der Quantenpunkt-Nukleation festgelegt. Durch die geätzten Grenzflächen in Quantenpunkt-Nähe entstehen jedoch auch Defektzustände, die negativen Einfluss auf die Kohärenz der Quantenpunkt-Emission nehmen. Deshalb wurde an diesem Typus von Quantenpunkten die strikt resonante Anregung etabliert und zum ersten Mal die kohärente Kopplung des Exzitons an ein resonantes Lichtfeld demonstriert. Zudem konnte die deterministische Kontrolle der Exzitonbesetzung über den Nachweis einer Rabi-Oszillation gezeigt werden. Abschließend wird das Konzept der kryogenen in-situ-Lithographie vorgestellt. Diese erlaubt die laterale Ausrichtung der Mikrokavität an die Position eines selbstorganisiert gewachsenen Quantenpunktes. Damit konnte gezielt die Emission eines zuvor ausgewählten, spektral schmalen Quantenpunktes mit nahezu 75 % Gesamteffizienz eingesammelt werden. Die Ununterscheidbarkeit der Quantenpunkt-Photonen war dabei mit einer Zwei-Photonen Interferenz Visibilität von bis zu $\nu=(88\pm3)~\%$ sehr hoch. Damit wurde im Rahmen dieser Arbeit eine Einzelphotonenquelle realisiert, aus der sich sehr effizient kohärente Photonen auskoppeln lassen, was einen wichtigen Schritt hin zur deterministischen Fabrikation von Lichtquellen für quantenphysikalischen Anwendungen darstellt. / The aim of this thesis was to develop an efficient and scalable source of single and indistinguishable photons. This is a fundamental element of future quantum physical applications like quantum communication or quantum networks. These concepts use quantum mechanical systems to either establish absolute secure communication or to construct new computers, whose calculating capacity for specialized algorithms - like integer factorization - is far beyond today's systems. One possible realization of quantum communication is the key distribution between two parties via using the BB84-protocol. This scheme needs a lights source that emits the physical smallest amount of light - a single photon. The communication channel between transmitter and receiver is then secured against eavesdropping by different polarisation states of these photons. The non-avoidable loses in the quantum channel limit the maximum possible communication distance, which is why the signal has to be amplified with a so called quantum repeater after a certain distance. Such a repeater can also be realized with a single photon source. In addition to the BB84-protocol, for realizing the concept of a quantum repeater the photons have to share all their properties like energy and polarization, i. e. they need to be indistinguishable. Over the past years, semiconductor quantum dots have been identified as a promising candidate for such a light source. Due to the solid state scheme, these structures can be implemented into complex photonic architectures to increase the outcoupling efficiency and the emission rate of single photons. The main goal of the following work was therefore the realization of an efficient source of single and indistinguishable photons. Keeping future applications in mind, the additional focus of this work was lying on the scalable and deterministic fabrication of these quantum dot structures and two technological approaches - the cryogenic in-situ-lithography and the positioned growth of quantum dots - were investigated. In the first part of this thesis, a novel material system, which serves as a source of single photons is presented. Spectrally sharp emission features with a linewidth down to 50 µeV from bulk Al$_{0,48}$In$_{0,52}$As grown on InP(111) substrates were observed. Via cross-section scanning tunneling microscopy measurements, nanoclusters with a diameter of approximately 16 nm and a 7 % increased indium concentration compared to the nominal composition, were found. Additional simulations of these complexes identify these nanoclusters as sources of the spectrally sharp emissions lines. Furthermore, single photon emission as well as the formation of multi excitonic charge complexes within these clusters via auto- and crosscorrelation measurements is confirmed. Afterwards, the work focusses on InGaAs-quantum dots and, as a first step, the coherence properties of a coupled quantum dot microcavity system are investigated within a joint theoretical and experimental work. Via temperature dependent two-photon interference measurements the single dephasing mechanisms of this system are extracted via modelling the results with a microscopic theory. Based on this results, the strict resonant excitation of quantum dots was established as a experimental key technique and quantum dot photons with a two-photon interference visibility above 98 % were generated at low temperatures. For scalable and deterministic quantum dot devices, one either needs to control the growth spot of a quantum dot or the position of an etched microcavity has to be aligned to the position of a self-organized quantum dot. In the subsequent parts if this work, studies on both technological approaches are presented. First, spectroscopic experiments on site controlled quantum dots were carried out. Via etched nanoholes, the nucleation spot of the quantum dot is defined. These etched surfaces may lead to defect states, which decrease the coherence of the quantum dot emission. In order to avoid these detrimental influence, the strict resonant excitation of such site controlled quantum dots is established and the coherent coupling of the site controlled quantum dot exciton to the resonant laser field is observed. In addition, deterministic control of the site controlled quantum dot population is achieved, which is verified via the observation of the first Rabi-oscillation. Finally, the so-called in-situ-lithography is presented, which allows for the lateral alignment of a self-organized quantum dot and the fundamental mode of a micropillar. Using this technique, an overall collection efficiency of single photons from a pre-selected quantum dot with a small linewidth of almost 75 % is shown. The coherence of this quantum dot was notably, which is demonstrated by a two-photon interference visibility as high as $\nu=(88\pm3)~\%$. In summary, an efficient source of single and indistinguishable photons was realized in this thesis, which is an important step towards the fabrication of deterministic quantum dot devices for quantum mechanical applications.
5

Multi-species gas detection based on an external-cavity quantum cascade laser spectrometer in the mid-infrared fingerprint region / Multikomponenten Gasdetektion basierend auf einem Externen-Kavitäts-Quantenkaskadenlaser im mittleren Infrarot-Fingerprint-Bereich

Heinrich, Robert January 2022 (has links) (PDF)
Laser spectroscopic gas sensing has been applied for decades for several applications as atmospheric monitoring, industrial combustion gas analysis or fundamental research. The availability of new laser sources in the mid-infrared opens the spectral fingerprint range to the technology where multiple molecules possess their fundamental ro-vibrational absorption features that allow very sensitive detection and accurate discrimination of the species. The increasing maturity of quantum cascade lasers that cover this highly interesting spectral range motivated this research to gain fundamental knowledge about the spectra of hydrocarbon gases in pure composition and in complex mixtures as they occur in the petro-chemical industry. The long-term target of developing accurate and fast hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in this industry. This thesis aims to contribute to a higher accuracy and more comprehensive understanding of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet unavailable high resolution and high accuracy reference spectra of the respective gases, the investigation of their spectral behavior in mixtures due to collisional broadening of their transitions and the verification of the feasibility to quantitatively discriminate the spectra when several overlapping species are simultaneously measured in gas mixtures. To achieve this knowledge a new laboratory environment was planned and built up to allow for the supply of the individual gases and their arbitrary mixing. The main element was the development of a broadly tunable external-cavity quantum cascade laser based spectrometer to record the required spectra. This also included the development of a new measurement method to obtain highly resolved and nearly gap-less spectral coverage as well as a sophisticated signal post-processing that was crucial to achieve the high accuracy of the measurements. The spectroscopic setup was used for a thorough investigation of the spectra of the first seven alkanes as of their mixtures. Measurements were realized that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4 for long-time averaging of the acquired spectra. These spectral measurements accomplish a quality that compares to state-of-the art spectral databases and revealed so far undocumented details of several of the investigated gases that have not been measured with this high resolution before at the chosen measurement conditions. The results demonstrate the first laser spectroscopic discrimination of a seven component gas mixture with absolute accuracies below 0.5 vol.% in the mid-infrared provided that a sufficiently broad spectral range is covered in the measurements. Remaining challenges for obtaining improved spectral models of the gases and limitations of the measurement accuracy and technology are discussed. / Laserspektroskopie ist eine seit Jahrezehnten verbreitete Methodik zur Gasmessung. Zu den Anwendungen zählen Atmosphärenuntersuchungen, die Analyse von industriellen Verbrennungsgasen oder Grundlagenforschung der Gasspektren. Die Verfügbarkeit neuer Laserquellen im mittleren Infrarotbereich eröffnet den sogenannten spektralen "Fingerprint-Bereich", in welchem eine Vielzahl von Molekülen ihre spezifischen Rotations- Vibrations-Grundschwingungen haben, und damit sehr genaue Konzentrationsbestimmung und exakte Unterscheidung der Gase ermöglicht. Die zunehmende Reife von Quantenkaskadenlasern motivierte diese Forschungsarbeit, um Grundlagenwissen über pure Kohlenwasserstoffspektren und deren Mischungen, wie sie beispielsweise in der petrochemischen Industrie auftreten, zu erlangen. Das langfristige Ziel der Entwicklung eines hochgenauen und schnellen Analysators für Kohlenwasserstoffgemische, welcher Echtzeit-Messungen und damit direkte Rückkopplungsschleifen ermöglicht, würde zu einem Paradigmenwechsel in der Prozesskontrolle vieler Industriebereiche führen. Diese Doktorarbeit leistet einen Beitrag für ein umfassenderes Verständnis und höhere Genauigkeit der Messung von Kohlenwasserstoffgemischen. Dies beinhaltet die Aufnahme bisher nicht verfügbarer hochaufgelöster und hochgenauer Referenzspektren der untersuchten Gase, die Untersuchung ihres spektralen Verhaltens bei Stoßverbreiterung in Mischungen und der quantitativen Unterscheidbarkeit, wenn Moleküle mit überlappenden Spektren gleichzeitig gemessen werden. Um dieses Wissen zu erlangen, wurde ein neuer Laboraufbau zur Untersuchung einzelner Gase sowie deren Gemische geplant und aufgebaut. Die Hauptkomponente bildet eine weit abstimmbares Externe-Kavität- Quantenkaskadenlaser-Spektrometer. Weitere Teile der Entwicklung waren zudem eine neue Messmethodik, um hochaufgelöste und im untersuchten Spektralbereich nahezu lückenlose Spektren zu erhalten, sowie eine umfangreiche Nachverarbeitung der Messdaten, welche essentiell war, um die hohe Genauigkeit der Messungen zu ermöglichen. Der Spektrometeraufbau wurde zur Untersuchung der Spektren der ersten sieben Alkane und ihrer Mischungen verwendet. Die Messungen erreichen eine spektrale Auslösung von 0.001 cm-1 im Spektralbereich von 6-11 µm und garantieren gleichzeitig eine Genauigkeit von 0.001 cm-1. Eine Sensitivität von 2.5x10-4 konnte durch das Mitteln mehrer Messungen erreicht werden. Die Qualität der Spektren ist damit vergleichbar zu aktuellen Spektren-Datenbanken und zeigt zudem bisher undokumentierte Details in mehreren Spektren der gemessenen Gase auf, welche unter den gewählten Messbedingungen bisher nicht so hochaufgelöst gemessen wurden. Die Ergebnisse demonstrieren die erste laserspektrokopische Unterscheidung eines Siebenkomponentengemisches von Kohlenwasserstoffen im mittleren Infrarotbereich mit einer absoluten Konzentrationsgenauigkeit von unter 0.5 vol.% je Komponenten. Weitere Herausforderungen zur Verbesserung spektraler Modelle der Gase sowie die Grenzen der Messgenauigkeit und der verwendeten Technologie werden diskutiert.
6

Advancing Single-Molecule Localization Microscopy: Quantitative Analyses and Photometric Three-Dimensional Imaging / Weiterentwicklung von Einzel-Molekül Lokalisations-Mikroskopie: Quantitative Analysen und photometrische drei-dimensionale Bildgebung

Franke, Christian January 2019 (has links) (PDF)
Since its first experimental implementation in 2005, single-molecule localization microscopy (SMLM) emerged as a versatile and powerful imaging tool for biological structures with nanometer resolution. By now, SMLM has compiled an extensive track-record of novel insights in sub- and inter- cellular organization.\\ Moreover, since all SMLM techniques rely on the analysis of emission patterns from isolated fluorophores, they inherently allocate molecular information $per$ $definitionem$.\\ Consequently, SMLM transitioned from its origin as pure high-resolution imaging instrument towards quantitative microscopy, where the key information medium is no longer the highly resolved image itself, but the raw localization data set.\\ The work presented in this thesis is part of the ongoing effort to translate those $per$ $se$ molecular information gained by SMLM imaging to insights into the structural organization of the targeted protein or even beyond. Although largely consistent in their objectives, the general distinction between global or segmentation clustering approaches on one side and particle averaging or meta-analyses techniques on the other is usually made.\\ During the course of my thesis, I designed, implemented and employed numerous quantitative approaches with varying degrees of complexity and fields of application.\\ \\ In my first major project, I analyzed the localization distribution of the integral protein gp210 of the nuclear pore complex (NPC) with an iterative \textit{k}-means algorithm. Relating the distinct localization statistics of separated gp210 domains to isolated fluorescent signals led, among others, to the conclusion that the anchoring ring of the NPC consists of 8 homo-dimers of gp210.\\ This is of particular significance, both because it answered a decades long standing question about the nature of the gp210 ring and it showcased the possibility to gain structural information well beyond the resolution capabilities of SMLM by crafty quantification approaches.\\ \\ The second major project reported comprises an extensive study of the synaptonemal complex (SNC) and linked cohesin complexes. Here, I employed a multi-level meta-analysis of the localization sets of various SNC proteins to facilitate the compilation of a novel model of the molecular organization of the major SNC components with so far unmatched extend and detail with isotropic three-dimensional resolution.\\ In a second venture, the two murine cohesin components SMC3 and STAG3 connected to the SNC were analyzed. Applying an adapted algorithm, considering the disperse nature of cohesins, led to the realization that there is an apparent polarization of those cohesin complexes in the SNC, as well as a possible sub-structure of STAG3 beyond the resolution capabilities of SMLM.\\ \\ Other minor projects connected to localization quantification included the study of plasma membrane glycans regarding their overall localization distribution and particular homogeneity as well as the investigation of two flotillin proteins in the membrane of bacteria, forming clusters of distinct shapes and sizes.\\ \\ Finally, a novel approach to three-dimensional SMLM is presented, employing the precise quantification of single molecule emitter intensities. This method, named TRABI, relies on the principles of aperture photometry which were improved for SMLM.\\ With TRABI it was shown, that widely used Gaussian fitting based localization software underestimates photon counts significantly. This mismatch was utilized as a $z$-dependent parameter, enabling the conversion of 2D SMLM data to a virtual 3D space. Furthermore it was demonstrated, that TRABI can be combined beneficially with a multi-plane detection scheme, resulting in superior performance regarding axial localization precision and resolution.\\ Additionally, TRABI has been subsequently employed to photometrically characterize a novel dye for SMLM, revealing superior photo-physical properties at the single-molecule level.\\ Following the conclusion of this thesis, the TRABI method and its applications remains subject of diverse ongoing research. / Seit ihrer ersten experimentellen Umsetzung in 2005 hat sich die Einzel-Molekül Lokalisations-Mikroskopie (\textit{engl.} single-molecule localization microscopy (SMLM)) als vielseitig einsetzbares Verfahren in der biologischen Bildgebung etabliert, vor allem aufgrund ihres hohen Auflösungsvermögens im Nanometer Bereich. Bis heute wurde eine Reihe neuer Erkenntnisse bezüglich der sub- und inter- zellulären Organisation durch den Einsatz der SMLM erlangt.\\ Aufgrund der Tatsache, dass alle SMLM Techniken auf dem Prinzip basieren, isolierte Fluorophore zu detektieren und zu analysieren, beinhalten SMLM Daten $per$ $definitionem$ molekulare Informationen.\\ Folgerichtig entwickelte sich das Feld der SMLM vom reinen Bildgebungsinstrument mit Nanometer-Auflösung hin zu quantitativer Mikroskopie, bei welcher der Fokus nicht länger vornehmlich auf dem hochaufgelöstem Bild, sondern vielmehr auf den Lokalisationsdaten liegt.\\ Die vorliegende Arbeit ist als Teil der anhaltenden Bestrebungen zu sehen, aus den $per$ $se$ molekularen Informationen der SMLM weiterführende Erkenntnisse über die strukturelle Organisation der markierten Proteine zu gewinnen. Obwohl mit der gleichen prinzipiellen Zielsetzung versehen, unterscheiden sich hierbei globale oder Segmentierungs- Clusteranalysen von Lokalisations-Meta-Analysen oder so genannten \textit{particle averaging} Ansätzen.\\ Während meiner Doktorarbeit habe ich verschiedene Quantifizierungs Ansätze entworfen, implementiert und angewendet, mit unterschiedlichen Graden an Komplexität und Breite des Anwendungsgebietes.\\ \\ In meinem ersten wesentlichem Projekt analysierte ich mit einem iterativen \textit{k}-means Algorithmus die Lokalisationsverteilung des integralen Proteins gp210, welches Teil des Kernporenkomplexes ist (\textit{engl.} nuclear pore complex (NPC)). Durch den Vergleich der charakteristischen Lokalisations-Statistik von separierten gp210 Domänen mit isolierten Fluoreszenzmarkern konnte unter anderem festgestellt werden, dass der Verankerungsring des NPC aus acht gp210 Homodimeren bestehen muss.\\ Diese Erkenntnis beantwortet zum einen eine jahrzehntealte Frage nach der Zusammensetzung des gp210 Rings und zum anderen liefert sie ein Beispiel dafür, dass durch eine geschickte Analyse der Lokalisationsstatistik strukturelle Informationen erlangt werden können, die jenseits des räumlichen Auflösungsvermögens von SMLM liegen.\\ \\ Das zweite hier vorgestellte wesentliche Projekt beinhaltet eine umfassende Studie des Synaptonemalen Komplexes (\textit{engl.} synaptonemal complex (SNC)) und damit verbundenen Cohesin Komplexen. Um die molekulare Organisation des SNC zu untersuchen, implementierte ich eine multi-level Meta-Analyse der Lokalisationsdaten mehrerer SNC Komponenten. Aus dessen Ergebnissen konnte ein neues drei dimensionales molekulares Modell des SNC erstellt werden.\\ Nachfolgend wurden die beiden murinen Cohesine SMC3 und STAG3 mit adaptierter Methodik untersucht. Hierbei musste die starke intrinsische Dispersion der Cohesin-Signale berücksichtigt werden. Die Analyse ergab deutliche Hinweise auf eine Polarisation der Cohesine innerhalb des SNC. Zudem zeigte sich eine mögliche Substruktur in der Organisation von STAG3, die unterhalb der Auflösungsgrenze von SMLM liegt.\\ \\ Weitere Nebenprojekte im Zusammenhang mit quantitativer Lokalisationsanalyse umfassten die Untersuchung der Lokalisationsverteilung von Plasma-Membran Glykanen, sowie zweier Flotillin Proteine in den Membranen von Bakterien, welche Cluster unterschiedlicher Form und Größe aufzeigten.\\ \\ Schließlich wird ein neuartiger Ansatz für dreidimensionale SMLM vorge-stellt, die auf der genauen Bestimmung von Einzel-Molekül Intensitäten basiert. Diese Methode, genannt TRABI, stützt sich auf die Prinzipien der Apertur Photometrie, welche für die SMLM angepasst und verbessert wurden.\\ Mit TRABI konnte gezeigt werden, dass weit verbreitete Lokalisations-Software, die auf $Gaussian-Fitting$ basiert, die Photonenzahl von Emittern oftmals stark unterschätzt. Diese Diskrepanz kann als $z$-abhängiger Parameter verwendet werden um z.B. einen 2D SMLM Datenatz in einen virtuellen 3D Raum zu überführen. Außerdem wird gezeigt, dass TRABI vorteilhaft mit einem multi-plane Detektionsschema kombiniert werden kann und dabei höhere axiale Lokalisationsgenauigkeiten und Auflösungen er-reicht.\\ Zudem wurde TRABI eingesetzt, um einen neuen Fluoreszenzfarbstoff für SMLM zu charakterisieren und dessen verbesserte photo-physikalische Eigenschaften auf Einzel-Molekül Basis zu demonstrieren.\\ Auch nach Abschluss dieser Arbeit ist die TRABI Methode und deren Anwendung weiterhin Gegenstand diverser Forschungen.
7

Single-molecule localization algorithms in super-resolution microscopy / Einzelmoleküllokalisierungsalgorithmen in der superauflösenden Mikroskopie

Wolter, Steve January 2014 (has links) (PDF)
Lokalisationsmikroskopie ist eine Methodenklasse der superauflösenden Fluoreszenzmikroskopie, deren Methoden sich durch stochastische zeitliche Isolation der Fluoreszenzemission auszeichnen. Das Blinkverhalten von Fluorophoren wird so verändert, dass gleichzeitige Aktivierung von einander nahen Fluorophoren unwahrscheinlich ist. Bekannte okalisationsmikroskopische Methoden umfassen dSTORM, STORM, PALM, FPALM, oder GSDIM. Lokalisationsmikroskopie ist von hohem biologischem Interesse, weil sie die Auflösung des Fluoreszenzmikroskops bei minimalem technischem Aufwand um eine Größenordnung verbessert. Der verbundene Rechenaufwand ist allerdings erheblich, da Millionen von Fluoreszenzemissionen einzeln mit Nanometergenauigkeit lokalisiert werden müssen. Der Rechen- und Implementationsaufwand dieser Auswertung hat die Verbreitung der superauflösenden Mikroskopie lange verzögert. Diese Arbeit beschreibt meine algorithmische Grundstruktur für die Auswertung lokalisationsmikroskopischer Daten. Die Echtzeitfähigkeit, d.h. eine Auswertegeschwindigkeit oberhalb der Datenaufnahmegeschwindigkeit an normalen Messaufbauten, meines neuartigen und quelloffenen Programms wird demonstriert. Die Geschwindigkeit wird auf verbrauchermarktgängigen Prozessoren erreicht und dadurch spezialisierte Rechenzentren oder der Einsatz von Grafikkarten vermieden. Die Berechnung wird mit dem allgemein anerkannten Gaussschen Punktantwortmodell und einem Rauschmodell auf Basis der größten Poissonschen Wahrscheinlichkeit durchgeführt. Die algorithmische Grundstruktur wird erweitert, um robuste und optimale Zweifarbenauswertung zu realisieren und damit korrelative Mikroskopie zwischen verschiedenen Proteinen und Strukturen zu ermöglichen. Durch den Einsatz von kubischen Basissplines wird die Auswertung von dreidimensionalen Proben vereinfacht und stabilisiert, um präzisem Abbilden von mikrometerdicken Proben näher zu kommen. Das Grenzverhalten von Lokalisationsalgorithmen bei hohen Emissionsdichten wird untersucht. Abschließend werden Algorithmen für die Anwendung der Lokalisationsmikroskopie auf verbreitete Probleme der Biologie aufgezeigt. Zelluläre Bewegung und Motilität werden anhand der in vitro Bewegung von Myosin-Aktin-Filamenten studiert. Lebendzellbildgebung mit hellen und stabilen organischen Fluorophoren wird mittels SNAP-tag-Fusionsproteinen realisiert. Die Analyse des Aufbaus von Proteinklumpen zeigt, wie Lokalisationsmikroskopie neue quantitative Ansätze jenseits reiner Bildgebung bietet. / Localization microscopy is a class of super-resolution fluorescence microscopy techniques. Localization microscopy methods are characterized by stochastic temporal isolation of fluorophore emission, i.e., making the fluorophores blink so rapidly that no two are likely to be photoactive at the same time close to each other. Well-known localization microscopy methods include dSTORM}, STORM, PALM, FPALM, or GSDIM. The biological community has taken great interest in localization microscopy, since it can enhance the resolution of common fluorescence microscopy by an order of magnitude at little experimental cost. However, localization microscopy has considerable computational cost since millions of individual stochastic emissions must be located with nanometer precision. The computational cost of this evaluation, and the organizational cost of implementing the complex algorithms, has impeded adoption of super-resolution microscopy for a long time. In this work, I describe my algorithmic framework for evaluating localization microscopy data. I demonstrate how my novel open-source software achieves real-time data evaluation, i.e., can evaluate data faster than the common experimental setups can capture them. I show how this speed is attained on standard consumer-grade CPUs, removing the need for computing on expensive clusters or deploying graphics processing units. The evaluation is performed with the widely accepted Gaussian PSF model and a Poissonian maximum-likelihood noise model. I extend the computational model to show how robust, optimal two-color evaluation is realized, allowing correlative microscopy between multiple proteins or structures. By employing cubic B-splines, I show how the evaluation of three-dimensional samples can be made simple and robust, taking an important step towards precise imaging of micrometer-thick samples. I uncover the behavior and limits of localization algorithms in the face of increasing emission densities. Finally, I show up algorithms to extend localization microscopy to common biological problems. I investigate cellular movement and motility by considering the in vitro movement of myosin-actin filaments. I show how SNAP-tag fusion proteins enable imaging with bright and stable organic fluorophores in live cells. By analyzing the internal structure of protein clusters, I show how localization microscopy can provide new quantitative approaches beyond pure imaging.
8

Elektronische Struktur von Halbleiteroberflächen mit starker Spin-Bahn-Wechselwirkung: Topologie, Spinpolarisation und Robustheit / Electronic structure of semiconductor surfaces with strong spin-orbit interactions: topology, spin polarisation and robustness

Seibel, Christoph January 2016 (has links) (PDF)
Neue Erkenntnisse über elektronische Eigenschaften von Festkörpern legen den Grundstein für innovative Anwendungen der Zukunft. Von zentraler Bedeutung sind insbesondere die Eigenschaften der Elektronenspins. Um diese besser zu verstehen, befasst sich die vorliegende Arbeit mit der experimentellen Analyse der elektronischen Struktur von topologischen Isolatoren (Sb$_2$Te$_3$ , Bi$_2$Se$_x$Te$_{3−x}$, Bi$_{1.5}$Sb$_{0.5}$Te$_{1.8}$Se$_{1.2} und Bi$_{1.4}$Sb$_{1.1}$Te$_{2.2}$S$_{0.3}$) und Kristallen mit starker Spin-Bahn-Wechselwirkung (BiTeI) mittels Photoelektronenspektroskopie. Zu Beginn werden die zum Verständnis dieser Arbeit benötigten Grundlagen erklärt sowie die unterschiedlichen zum Einsatz kommenden Techniken eingeführt. Der Hauptteil der Arbeit teilt sich in drei Forschungsschwerpunkte. Der erste Teil befasst sich mit den elektronischen Eigenschaften der Valenzbandstruktur von Sb2Te3 und den auftretenden Oberflächenzuständen. Durch gezielte Variation der Energie der anregenden Strahlung wird der Charakter der Wellenfunktion des topologischen Oberflächenzustands und dessen Wechselwirkung mit Valenzzuständen erforscht. Dabei spielt die Topologie der Volumenbandstruktur eine grundlegende Rolle. Der zusätzliche Vergleich zu Photoemissionsrechnungen ermöglicht detaillierte Einblicke in die Wechselwirkung zwischen Oberflächen- und Volumenzuständen und gibt Aufschluss darüber, wie diese vermittelt werden. Im zweiten Abschnitt wird durch die Analyse des gemessenen Photoelektronenspins das Zusammenspiel der Spintextur des Grundzustands und Endzuständen in Bi2Te3 untersucht. Dabei treten, im Gegensatz zu Grundzustandsrechnungen, Radialkomponenten des Polarisationsvektors in nichtsymmetrischer Messgeometrie auf. Sowohl deren Energieabhängigkeit als auch deren Auftreten in Photoemissionsrechnungen (1-Schritt-Modell) deutet darauf hin, dass diese ihren Ursprung in Übergangsmatrixelementen des Photoemissionsprozesses haben. Dieses Ergebnis wird mit Spinpolarisationsmessungen am Oberflächenzustand des nicht-topologischen Schichtsystems BiTeI verglichen. Im dritten Teil werden Auswirkungen unterschiedlicher Manipulationen der untersuchten Materialien auf deren elektronische Eigenschaften beschrieben. Die Adsorption von Bruchteilen einer monoatomaren Lage des Alkalimetalls Caesium auf die Oberfläche des topologischen Isolators Sb2Te3 wird systematisch untersucht. Dadurch kann dessen intrinsische p-Dotierung teilweise abgebaut werden, wobei die Valenzbandstruktur trotz der Reaktivität des Adsorbats intakt bleibt. Des Weiteren werden Auswirkungen von Änderungen der Kristallstöchiometrie durch Volumendotierung vergleichend diskutiert. Ausblickend befasst sich das Kapitel mit dem Verhalten geringer Mengen ferromagnetischer Materialen (Fe, Ni) auf den Oberflächen der topologischen Isolatoren. Für die verschiedenen Adsorbate werden Trends aufgezeigt, die von Temperatur und Zusammensetzung des Substratkristalls abhängen. / New findings about electronic properties lay the foundation for future applications. The spin properties of systems with large spin-orbit coupling are particularly important. The content of this thesis therefore treats the experimental study of the surface electronic structure of topological insulators (Sb$_2$Te$_3$ , Bi$_2$Se$_x$Te$_{3−x}$, Bi$_{1.5}$Sb$_{0.5}$Te$_{1.8}$Se$_{1.2} and Bi$_{1.4}$Sb$_{1.1}$Te$_{2.2}$S$_{0.3}$) and topologically trivial BiTeI crystals using photoelectron spectroscopy. At the beginning basic knowledge to understand this thesis, as well as exploited techniques are addressed. The main part of this thesis separates into three research topics. The first part focuses on the electronic properties of the valence band structure and the wave functions of the occuring surface states. Via variation of the energy of the exciting radiation the character of the wavefunction of the respective topologically non trivial surface state as well as its interaction with valence states is explored. The bulk boundary correspondence and the topology of the bulk electronic structure is of special importance for this interaction. Additionally, it is concluded from photoemission calculations, that the interaction between surface and bulk valence states is mediated by a surface resonance state. The second section presents an analysis of photoelectron spins to investigate the respective contributions of the spin texture of the initial state and final states. This thesis reports on non-vanishing radial components of the polarization vector which do not appear in groundstate calculations. The energy dependance in combination with one-step photoemission calculations indicates that these radial components find their origin in transition matrix elements of the photoemission process. The result is compared to spin resolved measurements of the surface state of the layered material BiTeI which is not a topological insulator. In the third part the consequences of various manipulations of the analyzed materials on their respective electronic structure are described. The systematic adsorption of submonolayer amounts of the alkalimetal Caesium on the surface of the topological insulator Sb2Te3(0001) reduces its intrinsic p-doping without altering its valence band structure despite the reactivity of the adsorbate. Furthermore the effects of stoichiometric changes of elemental composition and bulk doping are being discussed. Finally the behavior of small amounts of ferromagnetic materials (Fe, Ni) on the surface of the respective topological insulators are being addressed. For the different adsorbates trends are shown, which depend on temperature and chemical composition of the substrate.
9

Wechselwirkung von Molekülen mit Laserpulsen: Untersuchungen zur numerischen Implementierung zeitabhängiger Störungstheorie und zu Effekten der absoluten Phase von Laserpulsen beliebiger Länge / Interaction of molecules with laser pulses: researches on the numerical implementation of time-dependent perturbation theory and on carrier envelope phase effects for laser pulses of arbitrary length

Renziehausen, Klaus January 2014 (has links) (PDF)
In dieser Dissertation wurden zwei Aspekte der Wechselwirkung von Laserpulsen mit Molekülen betrachtet: Erstens wurden numerische Algorithmen, die auf der zeitabhängigen Störungstheorie basieren, zur Berechnung von quantenmechanischen Wellenfunktionen analysiert. Zweitens wurden Effekte der absoluten Phase (Carrier envelope phase = CEP) von Laserpulsen bei der Laseranregung molekularer Systeme analysiert. In den Analysen zum ersten Aspekt wurden zwei verschiedene Algorithmen - in dieser Arbeit als simple und improved algorithm bezeichnet - verwendet, und die Normabweichung von mit diesen Algorithmen berechneten Wellenfunktionen untersucht. Es konnte gezeigt werden, dass diese Normabweichung für beide Algorithmen in zwei unterschiedliche Beiträge zerlegt werden kann. Der erste Normabweichungsbeitrag tritt aufgrund der numerischen Diskretisierung der Zeit auf und verschwindet, wenn der Zeitschritt, der die Dauer der Intervalle für diese Diskretisierung angibt, gegen Null geht. Man kann den ersten Normabweichungsbeitrag mit exzellenter Genauigkeit berechnen und seine Eigenschaften, die sich für die beiden Algorithmen erheblich unterschieden, eingehend analysieren. Der zweite Normabweichungsbeitrag tritt dadurch auf, dass die zeitabhängige Störungstheorie nicht normerhaltend ist, und geht daher gegen Null, wenn die Störungsordnung gegen unendlich geht. Dieser zweite Beitrag ist außerdem in guter Näherung unabhängig vom Zeitschritt und für beide Algorithmen näherungsweise gleich. Des Weiteren kann man das Verhalten des zweiten Normabweichungsbeitrags im Gegensatz zum ersten Beitrag nur qualitativ beschreiben. Für die Analyse zum zweiten Themengebiet dieser Arbeit, den CEP-Effekten, wurde betrachtet, ob CEP-Effekte auch für Laserpulse beliebiger Länge auftreten können. Über eine analytische Betrachtung erkennt man, dass dies für ein Zweiniveausystem nur dann der Fall ist, wenn beide Zustände vor Beginn der Wechselwirkung des Systems mit dem Laserpuls besetzt sind. Man kann aus diesem Ergebnis folgern, dass für einen Laserpuls, der zwei elektronische Zustände eines Moleküls über Einphotonenübergänge koppelt, in der Regel kein CEP-Effekt für beliebige Längen dieses Pulses auftritt. Der Grund dafür ist, dass vor der Wechselwirkung eines molekularen Systems mit einem Laserpuls für dieses üblicherweise nur der elektronische Grundzustand besetzt ist. In dieser Arbeit wird gezeigt, dass dieses Problem durch ein spezielles Zweipulsschema für die Anregung eines molekularen Systems gelöst werden kann. Für dieses Pulsschema wird ein erster Puls verwendet, der zeitlich so kurz ist, dass Wellenpakete in mehreren elektronischen Zuständen angeregt werden. Der nachfolgende zweite Laserpuls ist spektral schmal, und seine zeitliche Länge kann beliebig groß gewählt werden. Man erhält für dieses Pulsschema Observablen, die von der CEP des zweiten Pulses, aber nicht von der CEP des ersten Pulses abhängen; somit ist ein CEP-Effekt nachweisbar. Derartige Observablen sind geometrische Asymmetrien für Zerfallsprodukte von Photodissoziationsreaktionen. Insbesondere unterscheidet sich das hier vorgestellte Pulsschema von anderen Zweipulsschemata, für welche Observablen von der Differenz der CEPs beider Pulse abhängen, aber nicht von der CEP einer der beiden Pulse allein. / In this dissertation, two aspects for the interaction of laser pulses with molecules were considered: First, we analysed numerical algorithms which are based on time-dependent perturbation theory. Second, carrier envelope phase (= CEP) effects of laser pulses for the laser excitation of molecular systems were studied. In the analyses to the first aspect, two different algorithms referred in this thesis as simple and improved algorithm were used, and the norm deviation occurring for wave functions calculated with these algorithms was examined. As a result, this norm deviation can be divided in two different contributions for both algorithms. The first contribution occurs because of the numerical discretisation of time and disappears when the time step defining the length of the intervals for this discretisation goes to zero. This first contribution can be calculated with excellent accuracy, and its properties, which differ substantially for the two algorithms, can be analysed in detail. The second contribution occurs because time-dependent perturbation theory is not norm conserving. Thus, it goes to zero when the perturbation order goes to infinity. Moreover, this second contribution is in good approximation independent of the time step, and it is approximately equal for both algorithms. Futhermore, in contrast to the first contribution the behaviour of the second contribution can be described only qualitatively. For the analyses to the second aspect of this thesis, namely CEP effects, it was considered if CEP effects can also appear for laser pulses of arbitrary length. An analytical inspection reveals that for a two level system this is only true if both states are occupied before the laser pulse starts to interact with the system. This result allows to conclude that as a rule when a laser pulse couples two electronical states of a molecule by one photon transitions, no CEP effect arises for arbitrary lengths of this laser pulse. The reason for this is that normally only the electronical ground state is occupied before the interaction of the molecular system with the laser pulse starts. In this thesis it is shown that this problem can be solved with a special two-pulse-scheme for the excitation of a molecular system. For this pulse scheme a first pulse is applied which is temporally as short as to excite wave packets in several electronic states. The subsequent second laser pulse is spectrally small, and its temporal length can be chosen unconditionally large. For this pulse scheme there are observables which depend on the CEP of the second pulse but not on the CEP of the first pulse, thus a CEP effect is measurable. Such observables are geometrical asymmetries for decay products of photodissociation reactions. In particular the pulse scheme presented here differs from other two-pulse-schemes where the observables depend on the difference of the CEPs of both pulses but not on the CEP of one of the two pulses alone.
10

Spectroscopic investigation of molecular adsorption and desorption from individual single-wall carbon nanotubes / Spektroskopische Untersuchung von molekularer Adsorption und Desorption an einzelnen einwandigen Kohlenstoffnanoröhren

Kastner, Matthias J. January 2020 (has links) (PDF)
Nanoelectronics is an essential technology for down-scaling beyond the limit of silicon-based electronics. Single-Wall Carbon Nanotubes (SWNT) are semiconducting components that exhibit a large variety of properties that make them usable for sensing, telecommunication, or computational tasks. Due to their high surface to volume ratio, carbon nanotubes are strongly affected by molecular adsorptions, and almost all properties depend on surface adsorption. SWNT with smaller diameters (0.7-0.9nm) show a stronger sensitivity to surface effects. An optimized synthesis route was developed to produce these nanotubes directly. They were produced with a clean surface, high quality, and large lengths of 2 μ m. The results complement previous studies on larger diameters (0.9-1.4nm). They allow performing statistically significant assumptions for a perfect nanotube, which is selected from a subset of nanotubes with good emission intensity, and high mechanical durability. The adsorption of molecules on the surface of carbon nanotubes influences the motion and binding strength of chargeseparated states in this system. To gain insight into the adsorption processes on the surface with a minimum of concurrent overlapping effects, a microscopic setup, and a measurement technique were developed. The system was estimated to exhibit excellent properties like long exciton diffusion lengths (>350nm), and big exciton sizes (8.5(5)nm), which was substantiated by a simulation. We studied the adsorption processes at the surface of Single-Wall Carbon Nanotubes for molecules in the gas phase, solvent molecules, and surfactant molecules. The experiments were all carried out on suspended individualized carbon nanotubes on a silicon wafer substrate. The experiments in the gas-phase showed that the excitonic emission energy and intensity experiences a rapid blue shift during observation. This shift was associated with the spontaneous desorption of large clusters of gaseous molecules caused by laser heat up. The measurement of this desorption was essential for creating a reference to an initially clean surface and allows us to perform a comparison with previous measurements on this topic. Furthermore, the adsorption of hydrogen on the nanotube surface at high temperatures was investigated. It was found that a new emission mode arises slightly red-shifted to the excitonic emission in these systems. The new signal is almost equally strong as the main excitonic peak and was associated with the brightening of dark excitons at sp3-defects through a K-phonon assisted pathway. The finding is useful for the direct synthesis of spintronic devices as these systems are known to act as single-photon emitters. The suspended nanotubes were further studied to estimate the effect of solvent adsorption on the excitonic states during nanotube dispersion for each nanotube individually. A significant quantum yield loss is observable for hexane and acetonitrile, while the emission intensity was found to be the strongest in toluene. The reference to a clean surface allowed us to estimate the exact influence of the dielectric environment of adsorbing solvents on the excitonic emission energy. Solvent adsorption was found to lead to an energy shift that is almost twice as high as suggested in previous studies. The amount of this energy shift, however, was comparably similar for all solvents, which suggests that the influence of the distinct dielectric constant in the outer environment less significantly influences the energy shift than previously thought. An interesting phenomenon was found when using acetonitrile as a solvent, which leads to greatly enhanced emission properties. The emission is more than twice as high as in the same air-suspended nanotubes, which suggests a process that depends on the laser intensity. In this study, it was reasonably explained how an energy down-conversion is possible through the coupling of the excitonic states with solvent vibrations. The strength of this coupling, however, also suggests adsorptions to the inside of the tubular nanotube structure leading to a coupled vibration of linear acetonitrile molecules that are adsorbed to the inner surface. The findings are important for the field of nanofluidics and provide an excellent system for efficient energy down-conversion in the transmission window of biological tissue. Having separated the pure effect of solvent adsorption allowed us to study the undisturbed molecular adsorption of polymers in these systems. The addition of polyfluorene polymer leads to a slow but stepwise intensity increase. The intensity increase is overlapping with a concurrent process that leads to an intensity decrease. Unfortunately, observing the stepwise process has a low spacial resolution of only 100-250nm, which is in the range of the exciton diffusion length in these systems and hinders detailed analysis. The two competing and overlapping processes processes are considered to originate from slow π-stacking and fast side-chain binding. Insights into this process are essential for selecting suitably formed polymers. However, the findings also emphasize the importance of solvent selection during nanotube dispersion since solvent effects were proven to be far more critical on the quantum yield in these systems. These measurements can shed light on the ongoing debate on polymers adsorption during nanotube individualization and allow us to direct the discussion more towards the selection of suitable solvents. This work provides fundamental insights into the adsorption of various molecules on the surface of individually observed suspended Single-Wall Carbon Nanotubes. It allows observing the adsorption of individual molecules below the optical limit in the solid, liquid, and gas phases. Nanotubes are able to act as sensing material for detecting changes in their direct surrounding. These fundamental findings are also crucial for increasing the quantum yield of solvent-dispersed nanotubes. They can provide better light-harvesting systems for microscopy in biological tissue and set the base for a more efficient telecommunication infrastructure with nano-scale spintronics devices and lasing components. The newly discovered solvent alignment in the nanotube surrounding can potentially also be used for supercapacitors that are needed for caching the calculation results in computational devices that use polymer wrapped nanotubes as transistors. Although fundamental, these studies develop a strategy to enlighten this room that is barely only visible at the bottom of the nano-scale. / Nanoelektronik ist eine wichtige Technologie um das Größen-Limit gegenwärtiger Silizium-basierter Technologie zu überwinden. Einwandige Kohlenstoffnanoröhren sind halbleitende Moleküle, die eine Reihe von Eigenschaften dafür zur Verfügung stellen. Sie sind einsetzbar als Sensoren, in der Fernmeldetechnik und für elektronische Rechenoperationen. Aufgrund ihres hohen Verhältnisses von Oberfläche zu Volumen werden nahezu alle Eigenschaften von Kohlenstoffnanoröhren stark von Adsorption beeinflusst. Einwandige Kohlenstoffnanoröhren mit kleineren Durchmessern (0.7-0.9nm) zeigen einen stärkeren Einfluss auf Phänomene, die an der Oberfläche auftreten. Um speziell diese Nanoröhren genauer zu untersuchen wurde eine Synthese Strategie entwickelt, die Nanoröhren mit hoher Qualität und Länge herstellen kann und dabei eine saubere Oberfläche gewährleisten ohne ihre Emissions-Stärke durch Bündelung zu verlieren. Die erhaltenen Ergebnisse unterstützen Studien aus der Literatur, die zumeist an Röhren mit größeren Durchmessern durchgeführt wurden. Die Größe des Datensatzes erlaubt es, Nanoröhren mit perfekten Emissions-Eigenschaften und großer mechanischer Stabilität auszuwählen. Adsorptionen beeinflussen die Bewegung und Bindungs-Stärke der Excitonen, da sie ein Coulomb Potential an der Außenseite der Röhre ausbilden. Um die Adsorptionsprozess an der Oberfläche mit minimalen konkurrierenden Effekten zu untersuchen, wurde ein spezielles mikroskopisches Setup gewählt und eine Messmethode entwickelt um dieses System zu untersuchen. Das System wurde mit Hilfe von Bildern und Spektren charakterisiert. Über eine Simulation wurde außerdem gezeigt dass die untersuchten Nanoröhren große Diffusionslängen (>350nm) und Exciton Größen (<8.5nm) besitzen müssen. Der Adsorptions Prozess an Kohlenstoffnanoröhren wurde sowohl mit Molekülen in der Gas-Phase untersucht, also auch in Lösungsmitteln und mit Feststoffen. Alle Experimente wurde dabei an frei hängenden Röhren durchgeführt, die auf einem Silizium Wafer Substrat aufgebracht wurden. Die Experimente in der Gas Phase zeigten, dass die excitonische Emissions-Energie eine instantane und schnelle Blauverschiebung erfährt wenn die Nanoröhren mit einem Laser angeregt werden. Diese Verschiebung wurde auf die Desorption von Oberflächenverunreinigungen zurückgeführt, die an Luft inhärent die Messung beeinflussen. Durch die Annahme, nach der Untersuchung eine reine Oberfläche zu erhalten, konnte die Referenz der Vakkum-Emission erstellt werden, was es ermöglicht, den Einfluss der dielektrischen Umgebung genauer zu bestimmen. In einem weitern Experiment wurde die Adsorption von Wasserstoff getestet. In diesen Systemen bildet sich durch die Ausbildung von sp 3 -Defekten eine neue Emissionsbande aus. Solche Emissionen werden derzeit für die Anwendung als Einzelphotonenemitter diskutiert. Die hier vorgestellte Methode erlaubt die direkte Synthese solcher Systeme im CVD Ofen. Die frei hängenden Nanoröhren wurden weiter analysiert um den Effekt des Lösungsmittels auf die Emission detailiert zu untersuchen. Es wurde gezeigt, dass in Hexan und Acetonitril ein signifikant hoher Quantenausbeute-Verlust zu beobachten ist. Toluol hingegen zeigte sich hier am Besten. Die Energie-Verschiebungen waren insignifikant unterschiedlich zwischen den Lösungsmitteln. Ein Spezialfall war bei Acetonitril zu beobachten, in dem sich über den Zeitraum von 24h eine starke Emission herausbildet, die auf eine Kopplung mit Lösungsmittel-Schwingungen zurückgeführt wird. Die Stärke dieser Emission erlaubt die Vermutung, dass es sich um eine gekoppelte Schwingung von linear orientiertem Acetonitril in der Nanoröhre handelt. Eine solch starke Emission könnte zu Anwendungen in Zell-Gewebe führen, da weder Anregung noch Emission sich im Fenster der Blut- und Wasserabsorption befindet. Durch die eindeutige Identifizierung von Lösungsmitteleffekten auf die Dispergierung von Kohlenstoffnanoröhren war es möglich, den Prozess der Anlagerung von Polyfluorene Polymeren direkt zu beobachten. Das Hinzufügen von Polymer zur Lösung führt zu einem schrittweisen reversiblen Anstieg der Emissions Intensität. Dieser Anstieg wird von einem gleichzeitigen irreversiblen schrittweisen Abfall der Emissionsintensität begleitet. Leider ist das System nur geeignet, Adsorptionen bis maximal 100nm Länge aufzulösen. Eine detaillierte Analyse ist daher schwer. Trotzdem wird vermutet, dass es sich bei dem langsamen Prozess um das Ausbilden von π -Stapeln handelt, wobei der schnelle Prozess mit der nicht-kovalenten Bindung der Polymer-Seitenketten an die Oberfläche assoziiert wird. Obwohl über die eigentliche Bindung des Polymers nur Vermutungen angestellt werden können, so wirft die Untersuchung doch einen Fokus auf die Wahl des Lösungsmittels, da diese Entscheidung einen viel größeren Effekt verursacht, als die Bindung des Polymers selbst. Diese Arbeit stellt fundamentale Betrachtungen zur Adsorption von verschiedenen Molekülen an Kohlenstoffnanoröhren auf. Die Betrachtungen wurden mit festen, flüssigen und gasförmigen Molekülen durchgeführt. Die Ergebnisse zeigen, dass Nanoröhren geeignet sind, als Molekül-Sensoren verwendet zu werden, da sie stark auf Änderungen in ihrer Umgebung reagieren können. Weiterhin wurden Lösungsmittel und Eigenschaften aufgezeigt, die die Quanteneffizienz signifikant beeinflussen. Eine Anwendung in der biologischen Mikroskopie ist denkbar, genauso wie für eine effizientere und sicherere Fernmeldeinfrastruktur. Weiterhin wurden Wege aufgezeigt, Super-Kondensatoren auf Nanorohr-Basis zu bauen, die als Anwendung in einem Kohlenstoffnanorohr-basierenden Computer von Interesse sein könnten. Obwohl die Erkenntnisse fundamental sind, zeigen diese Studien, dass es mit bestimmten Tricks möglich ist, den Raum am unteren Ende der Nanometerskala zu erforschen und zu entdecken.

Page generated in 0.0507 seconds