1 |
Edge Lifting and Total Domination in GraphsDesormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 01 January 2013 (has links)
Let u and v be vertices of a graph G, such that the distance between u and v is two and x is a common neighbor of u and v. We define the edge lift of uv off x as the process of removing edges ux and vx while adding the edge uv to G. In this paper, we investigate the effect that edge lifting has on the total domination number of a graph. Among other results, we show that there are no trees for which every possible edge lift decreases the total domination number and that there are no trees for which every possible edge lift leaves the total domination number unchanged. Trees for which every possible edge lift increases the total domination number are characterized.
|
2 |
Edge Lifting and Total Domination in GraphsDesormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 01 January 2013 (has links)
Let u and v be vertices of a graph G, such that the distance between u and v is two and x is a common neighbor of u and v. We define the edge lift of uv off x as the process of removing edges ux and vx while adding the edge uv to G. In this paper, we investigate the effect that edge lifting has on the total domination number of a graph. Among other results, we show that there are no trees for which every possible edge lift decreases the total domination number and that there are no trees for which every possible edge lift leaves the total domination number unchanged. Trees for which every possible edge lift increases the total domination number are characterized.
|
3 |
Domination Edge Lift Critical TreesDesormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 01 March 2012 (has links)
Let uxv be an induced path with center x in a graph G. The edge lifting of uv off x is defined as the action of removing edges ux and vx from the edge set of G, while adding the edge uv to the edge set of G. We study trees for which every possible edge lift changes the domination number. We show that there are no trees for which every possible edge lift decreases the domination number. Trees for which every possible edge lift increases the domination number are characterized.
|
Page generated in 0.0683 seconds