• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 818
  • 148
  • 89
  • 72
  • 66
  • 32
  • 17
  • 15
  • 9
  • 8
  • 7
  • 7
  • 5
  • 5
  • 4
  • Tagged with
  • 1592
  • 194
  • 193
  • 188
  • 164
  • 111
  • 103
  • 100
  • 91
  • 85
  • 79
  • 77
  • 76
  • 75
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

MACHINABILITY ENHANCEMENT OF STAINLESS STEELS THROUGH CONTROL OF BUILT-UP EDGE FORMATION

Seid Ahmed, Yassmin January 2020 (has links)
MACHINABILITY ENHANCEMENT OF STAINLESS STEELS THROUGH CONTROL OF BUILT-UP EDGE FORMATION / Demand for parts made from stainless steel is rapidly increasing, especially in the oil and gas industries. Stainless steel provides a number of key advantages, such as high tensile strength, toughness, and excellent corrosion resistance. However, stainless steel cutting faces some serious difficulties. At low cutting speeds, workpiece material and the chips formed during machining tend to adhere to the cutting tool surface, forming a built-up edge (BUE). The BUE is an extremely deformed piece of material which intermittently sticks to the tool at the tool-chip interface throughout the cutting test, affecting tool life and surface integrity. Unstable BUE can cause tool failure and deterioration of the workpiece. However, stable BUE formation can protect the cutting tool from further wear, improving the productivity of stainless steel machining. This thesis presents an in-depth study of machining performance using different coated tools and various coolant conditions to examine the nature of the different tool wear mechanisms present during the turning of stainless steels. Then, different textures are generated on the tool rake face to control the stability of BUE and reduce friction during the machining process. Results show that the BUE can significantly improve the frictional conditions and workpiece surface integrity at low cutting speeds. Finally, square textures on tool rake face were found to control the stability of BUE and minimize the friction at the tool-chip interface. This reduces the average coefficient of friction by 20-24% and flank wear by 41-78% and increases surface finish by 54-68% in comparison to an untextured tool. / Thesis / Doctor of Philosophy (PhD) / Three main objectives are presented in this thesis. The first is a detailed investigation of the performance of stainless steel machining obtained by the use of different coated cutting tools and various cooling conditions. The goal of this research is to assess the reduction of tool service life, productivity, and part quality. The thesis also examines the causes of workpiece material adhesion to the cutting tool during the cutting test and to better explain its effects on tool wear and workpiece surface finish. This phenomenon is known as the "built-up edge" (BUE). Finally, different textures are applied on the cutting tool via a laser to stabilize the BUE formation on the cutting tool, thereby improving the quality of the part.
292

Design, Implementation, and Applications of Fully Autonomous Aerial Systems

Boubin, Jayson G. 02 September 2022 (has links)
No description available.
293

Active cutting edges in vitrified CBN grinding wheels.

Cai, R., Qi, Hong Sheng, Cai, G.Q. January 2006 (has links)
No / Wheel structure has a critical influence on grinding performance especially active cutting edge density. Experiments were carried out to find out the relationshipbetween active and staticcutting edge density. It was found that there are many more active cutting edges in grinding than expected based on chip thickness formulae mainly due to wheel deflection in grinding.
294

The security of big data in fog-enabled IoT applications including blockchain: a survey

Tariq, N., Asim, M., Al-Obeidat, F., Farooqi, M.Z., Baker, T., Hammoudeh, M., Ghafir, Ibrahim 24 January 2020 (has links)
Yes / The proliferation of inter-connected devices in critical industries, such as healthcare and power grid, is changing the perception of what constitutes critical infrastructure. The rising interconnectedness of new critical industries is driven by the growing demand for seamless access to information as the world becomes more mobile and connected and as the Internet of Things (IoT) grows. Critical industries are essential to the foundation of today’s society, and interruption of service in any of these sectors can reverberate through other sectors and even around the globe. In today’s hyper-connected world, the critical infrastructure is more vulnerable than ever to cyber threats, whether state sponsored, criminal groups or individuals. As the number of interconnected devices increases, the number of potential access points for hackers to disrupt critical infrastructure grows. This new attack surface emerges from fundamental changes in the critical infrastructure of organizations technology systems. This paper aims to improve understanding the challenges to secure future digital infrastructure while it is still evolving. After introducing the infrastructure generating big data, the functionality-based fog architecture is defined. In addition, a comprehensive review of security requirements in fog-enabled IoT systems is presented. Then, an in-depth analysis of the fog computing security challenges and big data privacy and trust concerns in relation to fog-enabled IoT are given. We also discuss blockchain as a key enabler to address many security related issues in IoT and consider closely the complementary interrelationships between blockchain and fog computing. In this context, this work formalizes the task of securing big data and its scope, provides a taxonomy to categories threats to fog-based IoT systems, presents a comprehensive comparison of state-of-the-art contributions in the field according to their security service and recommends promising research directions for future investigations.
295

Real Airfoil Effects on Leading Edge Noise

Staubs, Joshua Kyle 02 July 2008 (has links)
This dissertation presents measurements of the far-field noise associated with the interaction of grid-generated turbulence with a series of airfoils of various chord lengths, thicknesses, and camber. The radiated noise was measured for a number of angles of attack for each airfoil to determine the effects of angle of attack on the leading edge noise. Measurements are compared with numerous theories to determine the mechanism driving the production of leading edge noise. Calculations were also made using a boundary element method to determine the effects of airfoil shape on the unsteady loading spectrum on the different airfoils to attempt to explain the far-field noise. Measurements of the unsteady surface pressure on a single airfoil were made for a number of angles of attack to determine the effects of wind tunnel interference corrections on the unsteady surface pressure. These measurements were compared with those of Mish (2003) to determine the effects of the interference correction. An attempt was also made to correlate the unsteady loading on the airfoil with the far-field noise. The airfoils studied were a 0.203-m chord NACA 0012, a 0.61-m chord NACA 0015, a 0.914-m chord NACA 0012, a 0.914-m chord DU96, and a 0.914-m chord S831. All airfoils spanned the entire 1.83-m height of the test section. Measurements were made using the Virginia Tech Stability Wind Tunnel in its acoustic configuration with an anechoic test section with side walls made of stretched Kevlar fabric to reduce aerodynamic interference. Measurements were made in grid-generated turbulence with an integral length scale of 8.2-cm and a turbulence intensity of 3.9%. Far-field noise measurements were made at Mach numbers of 0.087 and 0.117 with various configurations of up to 4 Bruel and Kjaer microphones mounted at an observer angle of 90° measured from the wind tunnel axis. Unsteady surface pressure measurements were made on the NACA 0015 airfoil immersed in the same grid generated turbulence used in the far-field noise study. An array of microphones mounted subsurface along the airfoil chord and a spanwise row was used to measure the unsteady surface pressure. These measurements were made at angles of attack from 0 through 16° in 2° increments. Far-field noise measurements of the leading edge noise show a consistent angle of attack effect. The radiated noise increases as the angle of attack is increased over the frequency range. These effects are small for large integral scale to airfoil chord ratios. The larger airfoils have been shown to generate significantly less leading edge noise at high frequencies, but this effect does not appear to be solely dependent upon the leading edge radius. The leading edge noise can be predicted with accuracy using the method of Glegg et al. (2008). Unsteady surface pressure measurements have been shown to be largely independent of the wind tunnel interference correction as shown by comparison with Mish (2008). The same low frequency reduction described by Mish was seen for an interference correction that was nearly 30% larger. The unsteady sectional lift spectra have been shown to be related to the far-field noise spectra by a factor close to the dipole efficiency factor; however, no correlation could be found between the instantaneous unsteady surface pressure and the radiated noise. The spanwise averaged unsteady pressure difference spectra have been shown to be related to the far-field noise spectra by the dipole efficiency factor. / Ph. D.
296

Predictable Connected Traffic Infrastructure

Oza, Pratham Rajan 03 May 2022 (has links)
While increasing number of vehicles on urban roadways create uncontrolled congestion, connectivity among vehicles, traffic lights and other road-side units provide abundant data that paves avenues for novel smart traffic control mechanisms to mitigate traffic congestion and delays. However, increasingly complex vehicular applications have outpaced the computational capabilities of on-board processing units, therefore requiring novel offloading schemes onto additional resources located by the road-side. Adding connectivity and other computational resources on legacy traffic infrastructure may also introduce security vulnerabilities. To ensure that the timeliness and resource constraints of the vehicles using the roadways as well as the applications being deployed on the traffic infrastructure are met, the transportation systems needs to be more predictable. This dissertation discusses three areas that focus on improving the predictability and performance of the connected traffic infrastructure. Firstly, a holistic traffic control strategy is presented that ensures predictable traffic flow by minimizing traffic delays, accounting for unexpected traffic conditions and ensuring timely emergency vehicle traversal through an urban road network. Secondly, a vehicular edge resource management strategy is discussed that incorporates connected traffic lights data to meet timeliness requirements of the vehicular applications. Finally, security vulnerabilities in existing traffic controllers are studied and countermeasures are provided to ensure predictable traffic flow while thwarting attacks on the traffic infrastructure. / Doctor of Philosophy / Exponentially increasing vehicles especially in urban areas create pollution, delays and uncontrolled traffic congestion. However, improved traffic infrastructure brings connectivity among the vehicles, traffic lights, road-side detectors and other equipment, which can be leveraged to design new and advanced traffic control techniques. The initial work in this dissertation provides a traffic control technique that (i) reduces traffic wait times for the vehicles in urban areas, (ii) ensures safe and quick movements of emergency vehicles even through crowded areas, and (iii) ensures that the traffic keeps moving even under unexpected lane closures or roadblocks. As technology advances, connected vehicles are becoming increasingly automated. This allows the car manufacturers to design novel in-vehicle features where the passengers can now stream media-rich content, play augmented reality (AR)-based games and/or get high definition information about the surroundings on their car's display, while the car is driven through the urban traffic. This is made possible by providing additional computing resources along the road-side that the vehicles can utilize wirelessly to ensure passenger's comfort and improved experience of in-vehicle features. In this dissertation, a technique is provided to manage the computational resources which will allow vehicles (and its passengers) to use multiple features simultaneously. As the traffic infrastructure becomes increasingly inter-connected, it also allows malicious actors to exploit vulnerabilities such as modifying traffic lights, interfering with road-side sensors, etc. This can lead to increased traffic wait times and eventually bring down the traffic network. In the final work, one such vulnerability in traffic infrastructure is studied and mitigating measures are provided so that the traffic keeps moving even when an attack is detected. In all, this dissertation aims to improve safety, security and overall experience of the drivers, passengers and the pedestrians using the connected traffic infrastructure.
297

Unmanned Aerial Vehicles and Edge Computing in Wireless Networks

Shang, Bodong 28 January 2022 (has links)
Unmanned aerial vehicles (UAVs) attract increasing attention for various wireless network applications by using UAVs' reliable line-of-sight (LoS) paths in air-ground connections and their flexible placement and movement. As such, the wireless network architecture is becoming three-dimensional (3D), incorporating terrestrial and aerial network nodes, which is more dynamic than the traditional terrestrial communications network. Despite the UAVs' advantages of high LoS path probability and flexible mobility, the challenges of UAV communications need to be considered in the design of integrated air-ground networks, such as spectrum sharing, air-ground interference management, energy-efficient and cost-effective UAV-assisted communications. On the other hand, in wireless networks, users request not only reliable communication services but also execute computation-intensive and latency-sensitive tasks. As one of the enabling technologies in wireless networks, edge computing is proposed to offload users' computation tasks to edge servers to reduce users' latency and energy consumption. However, this requires efficient utilization of both communication resources and computation resources. Furthermore, integrating UAVs into edge computing networks brings many benefits, such as enhancing offloading ability and extending offloading coverage region. This dissertation makes a series of fundamental contributions to UAVs and edge computing in wireless networks that include: 1) Reliable UAV communications, 2) Efficient edge computing schemes, and 3) Integration of UAV and edge computing. In the first contribution, we investigate UAV spectrum access and UAV swarm-enabled aerial reconfigurable intelligent surface (SARIS) for achieving reliable UAV communications. On the one hand, we study a 3D spectrum sharing between device-to-device (D2D) and UAVs communications. Specifically, UAVs perform spatial spectrum sensing to opportunistically access the licensed channels occupied by the D2D communications of ground users. The results show that UAVs' optimal spatial spectrum sensing radius can be obtained given specific network parameters. On the other hand, we study the beamforming and placement design for SARIS networks in downlink transmissions. We consider that the direct links between the ground base station (BS) and mobile users are blocked due to obstacles in the urban environment. SARIS assists the BS in reflecting the signals to randomly distributed mobile users. The results show that the proposed SARIS network significantly improves the weighted sum-rate for ground users, and the placement design plays an essential role in the overall system performance. In the second contribution, we develop a joint communication and computation resource allocation scheme for vehicular edge computing (VEC) systems. The full channel state information (CSI) in VEC systems is not always available at roadside units (RSUs). The channel varies fast due to vehicles' mobility, and it is pretty challenging to estimate CSI and feed back the RSUs for processing the VEC algorithms. To address the above problem, we introduce a large-scale CSI-based partial computation offloading scheme for VEC systems. Using deep learning and optimization tools, we minimize the users' energy consumption while guaranteeing their offloading latency and outage constraints. The results demonstrate that the introduced resource allocation scheme can significantly reduce the total energy consumption of users compared with other computation offloading schemes. In the third contribution, we present novel frameworks for integrating UAVs to edge computing networks to achieve improved computing performance. We study mobile edge computing (MEC) in air-ground integrated wireless networks, including ground computational access points (GCAPs), UAVs, and user equipment (UE), where UAVs and GCAPs cooperatively provide computation resources for UEs. The resource allocation algorithm is developed based on the block coordinate descent method by optimizing the subproblems of users' association, power control, bandwidth allocation, computation capacity allocation, and UAV placement. The results show the advantages of the introduced iterative algorithm regarding the reduced total energy consumption of UEs. Finally, we highlight directions for future works to advance the research presented in this dissertation and discuss its broader impact across the wireless networks industry and standard-making. / Doctor of Philosophy / The fifth-generation (5G) cellular network aims to achieve a high data rate by having greater bandwidth, deploying denser networks, and multiplying the antenna links' capacity. However, the current wireless cellular networks are fixed on the ground and thus pose many disadvantages. Moreover, the improved system performance comes at the cost of increased capital expenditures and operating expenses in wireless networks due to the enormous energy consumption at base stations (BS) and user equipment (UE). More spectrum and energy-efficient yet cost-effective technologies need to be developed in next-generation wireless networks, i.e., beyond-5G or sixth-generation (6G) networks. Recently, unmanned aerial vehicle (UAV) has attracted significant attention in wireless communications. Due to UAVs' agility and mobility, UAVs can be quickly deployed to support reliable communications, resorting to its line-of-sight-dominated connections in the air-ground channels. However, the sufficient available spectrum for extensive UAV communications is scarce, and the co-channel interference in air-air and air-ground connections need to be considered in the design of UAV networks. In addition to users' communication requests, users also need to execute intensive computation tasks with specific latency requirements. As such, edge computing has been proposed to integrate wireless communications and computing by offloading users' computation tasks to edge servers in proximity, reducing users' computation energy consumption and latency. Besides, integrating UAVs into edge computing networks makes efficient offloading schemes by leveraging the advantages of UAV communications. This dissertation makes several contributions that enhance UAV communications and edge computing systems performance, respectively, and present novel frameworks for UAV-assisted three-dimensional (3D) edge computing systems. This dissertation addresses the fundamental challenges in UAV communications, including spectrum sharing, interference management, UAV 3D placement, and beamforming, allowing broadband, wide-scale, cost-effective, and reliable wireless connectivity. Furthermore, this dissertation focuses on the energy-efficient vehicular edge computing systems and mobile edge computing systems, where the UAVs are applied to achieve 3D edge computing systems. To this end, various mathematical frameworks and efficient joint communication and computation resource allocation algorithms are proposed to design, analyze, optimize, and deploy UAV and edge computing systems. The results show that the proposed air-ground integrated networks can deliver spectrum-and-energy-efficient yet cost-effective wireless services, thus providing ubiquitous wireless connectivity and green computation offloading in the future beyond-5G or 6G wireless networks.
298

Bio-Inspired Control of Roughness and Trailing Edge Noise

Clark, Ian Andrew 27 April 2017 (has links)
Noise from fluid flow over rough surfaces is an important consideration in the design and performance of certain vehicles with high surface-area-to-perimeter ratios. A new method of noise control based on the anatomy of owls is developed and consists of fabric or fibrous canopies suspended above the surface. The method is tested experimentally and is found to reduce the total far-field noise emitted by the surface. The treatment also is found to reduce the magnitude of pressure fluctuations felt by the underlying surface by up to three orders of magnitude. Experimental investigations into the effects of geometric parameters of the canopies lead to an optimized design which maximizes noise reduction. The results obtained during the canopy experiment inspired a separate new device for the reduction of trailing edge noise. This type of noise is generated by flow past the wing of an aircraft or the blades of a wind turbine, and is a source of annoyance for those in surrounding communities. The newly developed treatment consists of small fins, or "finlets," placed near the trailing edge of an airfoil. The treatment is tested experimentally at near-full-scale conditions and is found to reduce the magnitude of far-field noise by up to 10 dB. Geometric parameters of the finlets are tested to determine the optimal size and spacing of the finlets to maximize noise reduction. Follow-up computational and experimental studies reveal the fluid mechanics behind the noise reduction by showing that the finlets produce a velocity deficit in the flow near the trailing edge and limit the magnitude and spanwise correlation lengthscale of turbulence near the trailing edge, factors which determine the magnitude of far-field noise. In a final experiment, the finlets are applied to a marine propeller and are found to reduce not only trailing edge noise, but also noise caused by the bluntness of the trailing edge. The results of this experiment show the potential usefulness of finlets to reduce noise from rotating systems, such as fans or propellers, as well as from structures which feature blunt trailing edges. / Ph. D.
299

Heterotopia: Loose Space For an Edge City

Babii, Volodymyr 26 January 2017 (has links)
In the beginning of my research I focused on transformations of the urban leftover and void space found in between buildings, street networks, parks or other institutionalized public spaces into urban places of character. By studying the spatial qualities of different places and their relation to human activities in those places I came up with the main question of my thesis: Can a space be designed loose and/or can it be loosened by design? The concept of “heterotopia”, as described by Michel Foucault in his essay “Of Other Spaces: Utopias and Heterotopias”, is a place functioning in nonhegemonic conditions, the place of “otherness” that has more layers of meaning than meet the eye. That concept proved to be the best description and the bounding frame of the design part of my research. / Master of Science
300

Edge-colorings and flows in Class 2 graphs

Tabarelli, Gloria 18 April 2024 (has links)
We consider edge-colorings and flows problems in Graph Theory that are hard to solve for Class 2 graphs. Most of them are strongly related to some outstanding open conjectures, such as the Cycle Double Cover Conjecture, the Berge-Fulkerson Conjecture, the Petersen Coloring Conjecture and the Tutte's 5-flow Conjecture. We obtain some new restrictions on the structure of a possible minimum counterexample to the former two conjectures. We prove that the Petersen graph is, in a specific sense, the only graph that could appear in the Petersen Coloring Conjecture, and we provide evidence that led to propose an analogous of the Tutte's 5-flow conjecture in higher dimensions. We prove a characterization result and a sufficient condition for general graphs in relation to another edge-coloring problem, which is the determination of the palette index of a graph.

Page generated in 0.021 seconds