• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heavy metals in biota from temperate Australian estuaries

Claus, Sonia Carmel, University of Western Sydney, College of Science, Technology and Environment, School of Science, Food and Horticulture January 2003 (has links)
The detection of anthropogenic impacts in our estuaries has become a critical social, political and scientific concern in recent years. Work has focussed on the effects of these impacts on the spatial and temporal patterns of biotic assemblages and searched for bioindicators and biomarkers of pollutants that may act as early warning signs. The estuaries in temperate Southeastern Australia have a diversity of biotic assemblages living in the soft sediment. One of the most abundant macroinvertebrates is the little studies mussel, Xenostrobus securi that is found living with an assemblage of benthic biota including amphipods, crabs, isopods and tanaids, bivalves and gastropods. Two commercial fish species bream and mullet also inhabit these estuaries. Numerous stormwater drains can be found entering the estuaries through the mangrove forests lining the shores. Along with inputs of freshwater, stormwater drains are thought to be responsible for the entry of heavy metals into estuaries. These heavy metals have the potential to alter the patterns of biotic assemblages and bioaccumulate in the tissues of miacroinvertebrates, mussels and fish living within temperate estuaries. Over the time of this study the concentrations of heavy metals in the sediment tissues and shell of X.Securis varies spatially and temporally. Although this study adds substantially to current knowledge there is still more that is needed to establish X. Securis as a bioindicator. Questions remain about uptake, depuration and response to environmental gradients of heavy metals in X. Securis. Before X Securis can be used routinely in monitoring heavy metal contamination these questions need to be further investigated / Doctor of Philosophy (PhD)

Page generated in 0.0875 seconds