• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effective interactions within an oscillator basis /

Luu, Thomas C., January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 86-89).
2

An improved procedure for calculating effective interactions and operators /

Song, Chang Liang, January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [120]-124).
3

Interactions and phase stability in Ni-rich binary alloys

He, Shuang January 2016 (has links)
Ni-based superalloys are the important materials for gas turbines in advancedaeroplane engines . The addition of refractory elements to these superalloys,such as rhenium and tungsten, can significantly improve the hightemperatureperformance by so-called solid-solution hardening. Although thestrengthening effect of refractory elements in Ni-based superalloys have beenknown for a long time, the effective interactions among alloying componentsas well as the atomic ordering in the alloy systems are still under investigationand even under debate. In this work, we study these interactions and thisordering for two binary alloys, Ni-rich Ni-Re and Ni-rich Ni-W, by means ofab initio simulations and statistical mechanics simulations based on the IsingHamiltonian. For the Ni-rich Ni-Re alloys, we show that the effective cluster interactionsvary substantially depending on the temperature, concentration of the componentsand the magnetic state of the matrix. The strain-induced interactionshave large contribution to the nearest-neighbor pair-interactions and some multisitecluster-interactions in the ferromagnetic and nonmagnetic states. Theordering tendency of binary Ni-Re alloy systems can be predicted in terms ofordering energy and enthalpy of formation. We show that the D1a orderedstructure should be stable at the concentration of 20 at.% Re in the Ni-rich Ni–Re alloy system. The Monte Carlo simulations of Ni-Re random alloysshow the existence with the D1a-Ni4Re ordered structure at low temperatures. We also calculated lattice parameters for different compositions of Ni-rich Ni-W alloys, and we find that lattice parameters of random Ni-W alloys increaselinearly with the concentration of W. This is in good agreement withthe Vegard’s law predictions and experimental data. We investigated phasestability of Ni-rich Ni-W alloys in terms of the enthalpies of formation andordering energies. We find the chemical pair interactions are sensitive to themagnetic state and concentration. The calculated strain-induced interactionsare quite large for the first coordination shell, which is due to a large sizemismatch of Ni and W. Taking local lattice relaxation into account, the Ni-Wsystems were modeled by Monte Carlo method. The D1a-Ni4W ordered structurecan be observed up to 22 at.% W. In higher concentrations of W, in ourMC calculations, the DO22-Ni3W and Pt2Mo-Ni2W ordered structures can beobserved in Ni-25 at.% W alloy and Ni-33 at.% W alloy, respectively. / <p>QC 20160721</p>
4

Density Dependent Effective Interactions and The O-p Shell Nuclei

Hughes, David James 05 1900 (has links)
Variational calculations have been performed using various internucleon interactions in an attempt to find an interaction which would reproduce the properties of the O-p shell nuclei. These interactions were derived by fitting procedures to the S-state phase shifts and to the properties of nuclear matter. A satisfactory interaction having been obtained, studies of isobaric nuclei have been undertaken. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.1094 seconds