• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A NEW METHOD FOR THE DETECTION AND QUANTIFICATION OF DEEP-OCEAN METHANE HYDRATES USING SEISMICS

Wojtowitz, Gabrielle, Zervos, Antonis, Clayton, Chris R.I. 07 1900 (has links)
Methane gas hydrates have attracted significant international interest as a potential future energy resource, but also as a geotechnical hazard for offshore operations related to hydrocarbon recovery. In this context, the abilities to detect the presence of hydrate in marine sediments and to quantify the amount of hydrate contained therein, have become increasingly important over the years. Detection and quantification of hydrates are done on the basis of seismic surveys, which measure indirectly the bulk dynamic properties of large volumes of sediment in situ. Seismic data are then interpreted using an effective medium model, which employs theoretical assumptions to relate wave velocities to gas hydrate content of the sediment. Wave velocity can then be used to infer hydrate concentration levels. A host of such effective medium models exists in the literature. Many of these models have been calibrated on and tested on specific sites, and are not readily transferable to other settings. In addition, many models ignore the existence of heterogeneities of the host sediment, or the inhomogeneous distribution of hydrate within it. These, however, are factors that may have a significant impact on the seismic signature of the sediment-hydrate system, and thus on the predicted quantity of hydrate. This paper presents a review of existing effective medium models and identifies general areas for improvement. A new numerical modelling method is outlined that enhances existing effective medium approaches, by taking explicitly into account different hydrate morphologies within the host sediment.
2

A Study of gas hydrates with ocean-bottom-seismometer data on the East Coast of Canada

Schlesinger, Angela 24 January 2013 (has links)
This dissertation presents a study on velocity modeling using ocean-bottom seismometer data (OBS) collected in 2004 and 2006 on the western Scotian slope. Gas hydrate and free gas concentrations and their distribution along the Scotian margin were derived based on the velocity results modeled with two different OBS data sets. A strong velocity increase (140-300 m/s) associated with gas hydrate was modeled for a depth of 220 m below seafloor (bsf). At the base of that high velocity zone (330 mbsf) the velocity decreases with 50-130 m/s. This depth is associated with the depth of the bottom-simulating reflector (BSR) observed in previous 2-D seismic reflection data. The gas hydrate concentrations (2-18 %) based on these velocities were calculated with an effective medium model. The velocity modeling shows that a sparser OBS spacing (~ 1 km) reveals more velocity uncertainties and smaller velocity contrasts than a denser (100 m) spaced OBS array. The results of the travel-time inverse modeling are applied in a waveform inverse modeling with OBS data in the second part of the thesis. The modeling tests were performed to obtain information on OBS instrument spacings necessary to detect low-concentration gas hydrate occurrences. The model runs show that an increase in instrument spacing leads to an increasing loss of model smoothness. However, large instrument spacings (>500 m) are beneficial for covering a wide target region with only using a few instruments, but decreasing the lateral resolution limits of the subsurface targets. In general half of the instrument spacing defines the lower boundary for the lateral width of the target structure. Waveform modeling with the 2006 OBS data has shown that low frequencies (<8 Hz) in the source spectrum are necessary to recover the background velocity of the model. The starting model derived from travel-time inversion of the 2006 data is not close enough to the true model. Thus the first-arrival waveforms do not match within half a cycle. Modeling with a starting frequency of 8 Hz and and applying data with a low signal-to-noise ratio (1.25) introduces artifacts into the final model result without updating the velocity. / Graduate

Page generated in 0.0934 seconds