• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des propriétés des magnétotransport de (Ge,Mn) semiconducteur ferromagnétique sur GaAs(001) pour lélectronique de spin

Yu, Ing-Song 31 July 2010 (has links) (PDF)
En utilisant l'épitaxie par jets moléculaires à basse température, nous avons élaboré des couches de (Ge,Mn), contenant des nanostructures ferromagnétiques, sur deux types de substrats GaAs d'orientation (001) : des substrats GaAs « epiready » (échantillons « Ga-GeMn »), et des substrats encapsulés par de l'arsenic amorphe (échantillons « As-GeMn »). Dans les échantillons Ga-GeMn, nous obtenons la formation de nanocolonnes riches en Mn ; celles-ci sont parallèles entre elles, ou enchevêtrées, suivant la morphologie de surface initiale. Les mesures de magnétométrie révèlent deux phases magnétiques : les nanocolonnes ferromagnétiques avec une température de Curie de 150 K, et la matrice de germanium, rendue paramagnétique par la présence de Mn dilué. Les mesures de magnétotransport montrent que ces couches sont de type p, et révèlent un l'effet Hall anormal (AHE) et plusieurs contributions à la magnétorésistance : une magnétorésistance géante négative, à basse température, la magnétorésistante orbitale, parabolique, et une contribution supplémentaire à faible champ. Un calcul des propriétés de magnétotransport a été commencé en s'appuyant sur des hypothèses de la structure de bande entre les inclusions riches en Mn et la matrice semiconductrice de type p : celui-ci montre que la présence d'AHE dans les inclusions donne naissance à un AHE sur tout l'échantillon, mais aussi à un mécanisme de magnétorésistance qui rend compte de cette contribution (que nous appelons magnétorésistance Hall). Dans les échantillons As-GeMn, la diffusion de l'arsenic change le mode de croissance, avec une décomposition spinodale qui perd son caractère bidimensionnel pour devenir tridimensionnelle, avec la formation d'agrégats riches en Mn (température de Curie de l'ordre de 50 K) et d'agrégats de la phase ferromagnétique connue Ge3Mn5. La compensation entre Mn (accepteur) et As (donneur) gouverne les propriétés de transport. Dans les couches de type n, une forte anisotropie de la magnétorésistance est observée, dont nous montrons qu'elle est due à des effets de localisation faible. Une autre contribution à la magnétorésistance est observée, que nous suggérons d'attribuer à une magnétorésistance tunnel à travers la jonction Schottky qui se forme à l'interface entre les inclusions riches en Mn, qui sont métalliques, et le semiconducteur Ge de type n.

Page generated in 0.1334 seconds