• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of constructed wetland on wastewater treatment

Chen, Zhong-Xun 02 September 2008 (has links)
Constructed wetland (CW) system is one natural purifying process. Using the CW systems to treat industrial wastewater or domestic sewage has been extensively application in many countries. Constructed wastewater treatment wetland must depend on the optimal operation parameters to achieve the best treatment efficiency. The objective of this research was to evaluate the effectiveness of Kaoping River Rail Bridge Constructed Wetland (KPCW) on contaminated river water treatment. The major influents came from the treated industrial wastewater from a paper mill [Yuen Foong Yu paper manufacturing company (System A)] and local drainage system (Chu Liao River) containing untreated domestic wastewater (System B).Results from this study show that the measured flow rates for Systems A and B systems were 10,968 and 13,147 m3/day, respectively. The hydraulic loading rates (HLR) and hydraulic retention time (HRT) for Systems A and B were 0.085 and 0.096 m/day, and 5.4 and 10.7 d, respectively. The average removal efficiencies for both systems ranged from 63.4-71.7% for biochemical oxygen demand (BOD), 39.5-44.4% for chemical oxygen demand (COD), 28.1-39.5% for ammonia nitrogen (NH4-N), 17.1-40.3% for total nitrogen (TN), 5.4-45.5% for total phosphorus (TP), and 91.1-98.7% for total coliform (TC). Reduction in suspend solid (SS) concentration was ineffective in both systems. This was due to the irregular harvest of the plants in the wetland. Results from the effluent probability method (EPM) evaluation indicate that the removal efficiency increased with the increase in influent pollutant concentration. Moreover, variations in pollutant loading rate (PLR) would affect both the removal rates and effluent concentrations. The experience obtained from this project will be helpful in designing similar natural water treatment systems for river water quality improvement for other river basins.

Page generated in 0.0976 seconds