• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determining the Optimal Orientation of Orthotropic Material for Maximizing Frequency Bandgaps

Haystead, Dane 20 November 2012 (has links)
As the use of carbon fiber reinforced polymers (CFRP) increases in aerospace struc- tures it is important to use this material in an efficient manner such that both the weight and cost of the structure are minimized while maintaining its performance. To com- bat undesirable vibrational characteristics of a structure an optimization program was developed which takes advantage of the orthotropic nature of composite materials to maximize eigenfrequency bandgaps. The results from the optimization process were then fabricated and subjected to modal testing. The experiments show that local fiber angle optimization is a valid method for modifying the natural frequencies of a structure with the theoretical results generally predicting the performance of the optimized composite plates.
2

Determining the Optimal Orientation of Orthotropic Material for Maximizing Frequency Bandgaps

Haystead, Dane 20 November 2012 (has links)
As the use of carbon fiber reinforced polymers (CFRP) increases in aerospace struc- tures it is important to use this material in an efficient manner such that both the weight and cost of the structure are minimized while maintaining its performance. To com- bat undesirable vibrational characteristics of a structure an optimization program was developed which takes advantage of the orthotropic nature of composite materials to maximize eigenfrequency bandgaps. The results from the optimization process were then fabricated and subjected to modal testing. The experiments show that local fiber angle optimization is a valid method for modifying the natural frequencies of a structure with the theoretical results generally predicting the performance of the optimized composite plates.

Page generated in 0.0493 seconds