• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Embedded Tree Structures and Eigenvalue Statistics of Genus Zero One-Face Maps

McNicholas, Erin Mari January 2006 (has links)
Using numerical simulations and combinatorics, this dissertation focuses on connections between random matrix theory and graph theory.We examine the adjacency matrices of three-regular graphs representing one-face maps. Numerical studies have revealed that the limiting eigenvalue statistics of these matrices are the same as those of much larger, and more widely studied classes of random matrices. In particular, the eigenvalue density is described by the McKay density formula, and the distribution of scaled eigenvalue spacings appears to be that of the Gaussian Orthogonal Ensemble (GOE).A natural question is whether the eigenvalue statistics depend on the genus of the underlying map. We present an algorithm for generating random three-regular graphs representing genus zero one-face maps. Our numerical studies of these three-regular graphs have revealed that their eigenvalue statistics are strikingly different from those of three-regular graphs representing maps of higher genus. While our results indicate that there is a limiting eigenvalue density formula in the genus zero case, it is not described by any established density function. Furthermore, the scaled eigenvalue spacings appear to be described by the exponential distribution function, not the GOE spacing distribution.The embedded graph of a genus zero one-face map is a planar tree, and there is a correlation between its vertices and the primitive cycles of the associated three-regular graph. The second half of this dissertation examines the structure of these embedded planar trees. In particular, we show how the Dyck path representation can be used to recast questions about the probabilistic structure of random planar trees into straightforward counting problems. Using this Dyck path approach, we find:1. the expected number of degree k vertices adjacent to j degree d vertices in a random planar tree, 2. the structure of the planar tree's adjacency matrix under a natural labeling of the vertices, and 3. an explanation for the existence of eigenvalues with multiplicity greater than one in the tree's spectrum.
2

Eigenvalue Statistics for Random Block Operators

Schmidt, Daniel F. 28 April 2015 (has links)
The Schrodinger Hamiltonian for a single electron in a crystalline solid with independent, identically distributed (i.i.d.) single-site potentials has been well studied. It has the form of a diagonal potential energy operator, which contains the random variables, plus a kinetic energy operator, which is deterministic. In the less-understood cases of multiple interacting charge carriers, or of correlated random variables, the Hamiltonian can take the form of a random block-diagonal operator, plus the usual kinetic energy term. Thus, it is of interest to understand the eigenvalue statistics for such operators. In this work, we establish a criterion under which certain random block operators will be guaranteed to satisfy Wegner, Minami, and higher-order estimates. This criterion is phrased in terms of properties of individual blocks of the Hamiltonian. We will then verify the input conditions of this criterion for a certain quasiparticle model with i.i.d. single-site potentials. Next, we will present a progress report on a project to verify the same input conditions for a class of one-dimensional, single-particle alloy-type models. These two results should be sufficient to demonstrate the utility of the criterion as a method of proving Wegner and Minami estimates for random block operators. / Ph. D.

Page generated in 0.1442 seconds