• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Star sets and related aspects of algebraic graph theory

Jackson, Penelope S. January 1999 (has links)
Let μ be an eigenvalue of the graph G with multiplicity k. A star set corresponding to μ in G is a subset of V(G) such that [x] = k and μ is not an eigenvalue of G - X. It is always the case that the vertex set of G can be partitioned into star sets corresponding to the distinct eigenvalues of G. Such a partition is called a star partition. We give some examples of star partitions and investigate the dominating properties of the set V (G) \ X when μ ε {-I, a}. The induced subgraph H = G - X is called a star complement for μ in G. The Reconstruction Theorem states that for a given eigenvalue μ of G, knowledge of a star complement corresponding to μ, together with knowledge of the edge set between X and its complement X, is sufficient to reconstruct G. Pursuant to this we explore the idea that the adjacencies of pairs of vertices in X is determined by the relationship between the H-neighbourhoods of these vertices. We give some new examples of cubic graphs in this context. For a given star complement H the range of possible values for the corresponding eigenvalue μ is constrained by the condition that μ must be a simple eigenvalue of some one-vertex extension of H, and a double eigenvalue of some two-vertex extension of H. We apply the Reconstruction Theorem to the generic form of a two-vertex extension of H, thereby obtaining sufficient information to construct a graph containing H as a star complement for one of the possible eigenvalues. We give examples of graph characterizations arising in the case where the star complement is (to within isolated vertices) a complete bipartite graph.

Page generated in 0.1134 seconds