Spelling suggestions: "subject:"electrical inductor"" "subject:"electrical conductors""
21 |
Analysis and design of a low-ripple coupled-inductor boost topologyButler, Stephen J. 31 October 2009 (has links)
This thesis presents the development, analysis, and design of a new low-ripple coupled-inductor boost topology. This topology is proposed for applications in which the conventional boost requires an input filter and two-stage output filter. One "zero-ripple" coupled magnetic provides both energy storage and second-order filtering of the input and output currents. Dc analysis is presented along with design guidelines. A novel magnetic structure is proposed which simplifies design and manufacture, while improving reliability. Small signal models for the proposed topology are presented along with hardware verification. It is found that, with proper damping, the small signal characteristics of the coupled-inductor topology are very similar to those of the conventional boost. This new boost topology offers a compact alternative to the conventional boost without sacrificing performance. / Master of Science
|
22 |
A digital-PID-control single-inductor triple-output (SITO) DC-DC converter with pre-sub-period inductor-current regulation. / CUHK electronic theses & dissertations collection / Digital dissertation consortiumJanuary 2010 (has links)
In this thesis, a digital-PID-control single-inductor triple-output (SITO) DC-DC converter is realized in AMS 0.35mum CMOS technology. The size of the chip is about 1600 mum x 1700 mum. To improve load current and reduce cross regulation, a Pre-Sub-Period inductor-current regulation is proposed. Based on the maximum duty cycle limiter, an adaptive inductor current adjustment is realized when the duty cycle of the digital PWM signal is larger than the set maximum duty cycle. By an optimized phase control sequence, the S&H stages of the feedback switching and ADC are controlled to on/off with a minimized delay time. Moreover, the control sequence can virtually remove the setting time. / Multiple voltage supplies are necessary to satisfy the different voltage supply requirements of the different on-chip blocks to reduce power consumption in modem electronic devices, such as the modem embedded systems, the portable devices, personal computing devices and wireless communications and imaging systems. For example, WiMAX transmitter includes different sub-blocks: Baseband processor, IQ modulator and power amplifier. Different blocks should operate with the different power supply voltages to satisfy the different requirements. / Single-input multiple-output DC-DC converter is presented to provide the different voltage supplies and reduce the cost on the elements such as the inductor on PCB and save PCB area. Meanwhile, to remove cross regulation and improve load driving capability, the DC-DC converter should operate in the pseudo-continuous mode/discontinuous mode (P-CCM/DCM). However, in the previous designs, the DC current in the inductor is fixed. When the load becomes heavy enough, cross regulation will significantly affect across the different sub-converters. / Jia, Jingbin. / "December 2009." / Adviser: KaNang Leung Alex. / Source: Dissertation Abstracts International, Volume: 72-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 121-124). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
23 |
Analysis and modeling of single-ended and differential spiral inductors in silicon-based RFICsWatson, Adam C. 02 December 2003 (has links)
A new comprehensive wide-band compact modeling methodology for
single-ended spiral inductors and differential spiral inductors is presented. The
new modeling methodology creates an equivalent circuit model consisting of
frequency-independent circuit elements for use in circuit simulators. A fast automated
extraction procedure is developed for determining the circuit element
values from two-port S-parameter measurement data. The methodology is extremely
flexible in allowing for accurate modeling of general classes of inductors
on high or low resistivity substrate and for large spirals exhibiting distributed
trends. The new modeling methodology is applied to general classes of spirals
with various sizes and substrate parameters.
The presented compact modeling methodology has major benefits including
greatly reducing model extraction time in comparison with currently available
models based on optimization methods. To demonstrate the accuracy in comparison
with past models a number of measurement data sets are used for sample
extractions. A developed computer program is presented and used for circuit
model extractions. Results are presented when the computer program is applied
to a high-volume inductor extraction. The extracted models show excellent agreement
with the measured data sets over the frequency range of 0.1 to 10 GHz. / Graduation date: 2004
|
24 |
Analysis of losses in power inductor for high-frequency switching power convertersChung, Hok-Yan. January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2001.
|
25 |
Analysis of losses in power inductor for high-frequency switching power converters鐘學仁, Chung, Hok-Yan. January 2001 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
|
26 |
RFID tags / planar inductors as chemical sensor platforms in liquid sensing applicationsSchumacher-Novak, Gregory Donald. January 2009 (has links)
Thesis (M.S.)--Marquette University, 2009. / Fabien Josse, Susan Schneider, Dean Jeutter, Advisors.
|
27 |
Termiese gedrag en ontwerp van magnetiese planêre komponenteVan Jaarsveld, Erik 06 September 2012 (has links)
M.Ing. / High frequency magnetic components have financial and physical advantages compared to low frequency magnetic components. Although high frequency magnetic components have been used for quite some time, the design and analysis of these components remain complicated.This can be ascribed to the effect of eddy currents and thermal constraints due to the smaller cooling area of such components. Planar magnetic components have long been preferred due to the higher manufacturing output, better quality control and the favorable flat shape of the component. Many studies have been conducted on planar magnetic components with respect to the energy storage capacity, air gap shape and placement, low permeability materials, to replace the air gaps, the placing of the conductors in the winding window, etc. The designs that are commonly used for planar magnetic components today, are the ones that are proven to work and not necessarily the ones that are optimal. In this study a thermal model is presented to ease the design of DC inductors. A lot of emphasis is placed on heat extraction resulting from losses in the embedded conductors through the core. This is an unconventional way to extract heat from the planar structure and leads to a new approach towards design planar inductor design.
|
28 |
Accurate modelling and experimental measurement of losses in planar inductorsImre, Tarik Gurhan 24 January 2012 (has links)
M.Ing. / Low profile power electronics components are currently in great demand. The rapid advances in semiconductor and micro-electronics technology during the last ten years have played a major role in the creation of this demand. These advances are in turn driven by the need for compact design in computing, communication, consumer electronic goods and control systems with direct consequences in power supply design and manufacture. The study covered by this thesis involves the design, manufacture and thermal analysis of a planar inductor, which is a typical planar power electronics component. First, a throughout literature survey of planar magnetics revealed that satisfactory experimental procedures for the thermal analysis of passive power electronic components under operating conditions representative of modern applications are seldomly applied. Secondly, a computer based field-solver program and analytical methods are used to design and analyse a planar inductor. The applicability of different methods for determination of low power loss in passive components is discussed next. Finally, an experimental method suitable for low power loss determination is proposed and investigated. This method can be used in the analysis of inductors or capacitors of different sizes. It has a wide spectrum of application due to the advantages of frequency independence and different possible power levels.
|
29 |
Design and fabrication of planar inductors for inductive proximity sensorsHayes, Monty Bradford 13 February 2009 (has links)
Position sensing is one of the most important tasks in the industrial manufacturing of goods and materials. Position sensing can take on a variety of forms and is used in the measurement of a wide range of variables such as distance, speed, the number of revolutions per minute, orientation, identification, and in collision protection. Proximity sensors play a significant role and are used in a plethora of industries including agriculture, consumer goods, transportation, industrial processes, electrical services, medical, military and avionics.
This research is aimed at improving the performance and manufacturability of inductive proximity sensors through the design and fabrication of coils using multilayer ceramic technologies common in the manufacturing of hybrid microelectronics components and circuits. As another alternative, multilayer structures utilizing polymer materials and fabrication techniques common to the printed circuit board (PCB) industry were also investigated.
Manufacture of the coils utilizing ceramic and polymer materials and hybrid and PCB fabrication techniques would eliminate the problems of repeatability, and the placement and potting of the coil. The fabrication techniques also lend well to the mass production of the coils using techniques that are well established in the electronics industry. The overall result would be a planar inductor with high yield that is suitable for mass production. / Master of Science
|
30 |
Heterogeneous Integration in Switchmode ElectronicsTien, Kevin January 2019 (has links)
This dissertation looks closely at deployment of thin-film integrated inductors within power electronics, including details on the state-of-the-art technology for such inductors and related packaging techniques. Design challenges for systems using these inductors are discussed in detail, including the current outlook on magnetics development and the impact of these non-linearities on system design. In particular, this work looks closely at effects often left behind in modern discrete-component-based power module design, such as soft core saturation and significant high-frequency losses. In conjunction with the magnetics, a well-known non-linear controller for buck converters is analyzed in-depth for the first time, using frameworks from variable structure and sliding-mode control. This allows for development of a more profound rationale for the heuristic design guidelines that have been heretofore provided for this class of controllers. To verify the theoretical development, a testbench integrated CMOS front-end for a switched-inductor step-down, or buck converter is used to investigate departures of system behavior from the general wisdom around buck converter performance. Two packaging methodologies are explored for integration, and their impact on the design cycle and module lifetimes are discussed in some detail.
|
Page generated in 0.077 seconds