• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 21
  • 14
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 93
  • 93
  • 31
  • 30
  • 23
  • 21
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Development of an experimental six-phase induction machine drive / Utveckling av en experimentell drivlina för en sexfasig asynkronmaskin.

Bianchi, Adam January 2021 (has links)
Electrical machines with more than three phases are usually called multiphase electrical machines and they can have several advantages compared to conventional three-phase electrical machines such as a lower content of space-harmonics, lower torque ripple and better fault tolerance. This degree project involves rewinding of a three-phase induction machine into an asymmetrical six-phase machine. The winding design is based on simulations of a machine model in a finite element method software and the method "the star of the slot" that computes winding layouts. A six-phase drive is developed based on an existing printed circuit board prototype that is not operating according to its original specifications. Debugging of the prototype is performed and solutions to the problems are identified. Design and layout improvements for better electromagnetic compatibility are also implemented. The drive including the electrical machine is tested and confirmed to be working according to the specifications. Speed control based on indirect rotor field orientation is implemented and tested for the six-phase induction machine as well with the machine connected as a standard three-phase induction machine. / Elektriska maskiner med fler än tre faser kallas vanligtvis flerfasiga elektriska maskiner och kan ha flera fördelar jämfört med konventionella trefasiga elektriska maskiner, som lägre innehåll av övervågor, lägre rippel i vridmomentet och bättre feltolerans. Detta examensarbete involverar omlindning av en trefasig asynkronmaskin till en asymmetrisk sexfasig asynkronmaskin. Lindningsdesignen baseras på simuleringar av en maskinmodell i mjukvara baserat på finita element metoden och metoden kallad the star of the slotsom räknar ut lindnings ritningar. En sexfasig drivlina utvecklas baserat på en existerande kretskorts prototyp som inte fungerar enligt dess ursprunliga specifikationer. Felsökning av prototypen utförs och lösningar till problemen identifieras. Design- och layoutförbättringar för bättre elektromagnetisk kompatibilitet implementeras också. Drivlinan med den elektriska maskinen inkluderad testas och bekräftas fungera enligt dess specifikationer. Hastighetsreglering baserad på indirekt rotorfälts orientering implementeras och testas för den sexfasiga asynkronmaskinen samt även med maskinen kopplad som en standard trefas asynkronmaskin.
92

<b>OPTIMIZATION STRATEGIES OF A PARAMETRIC PRODUCT DESIGN </b><b>FOR A CIRCULAR ECONOMY WITH APPLICATION TO AN </b><b>ELECTRIC TRACTION MOTOR</b>

Jesús Pérez-Cardona (17501118) 01 December 2023 (has links)
<p dir="ltr">In our daily lives, we rely on a multitude of discrete products to meet our needs. Traditional product design approaches have primarily focused on economic and technical aspects, often overlooking the pressing environmental and social challenges facing society. Recognizing the limitations of our ecological systems to cope with the waste generated by our current industrial processes, there is a growing need to anticipate the potential consequences of product design across technical, economic, environmental, and social dimensions to pave the way for a sustainable future. One promising strategy within this context is the integration of sustainability principles into optimization-based design models that consider a product's entire life cycle. While there have been previous efforts to optimize product life cycles, a comprehensive exploration of optimization-based design methods with a focus on multiple objectives for discrete products is essential. This dissertation explores the integration of sustainability principles with optimization-based design by taking the electric traction motor used in electric vehicles as a case study. This complex and environmentally significant technology is ideal for investigating the tradeoffs and benefits of incorporating sustainability objectives into the design process.</p><p dir="ltr">The key tasks undertaken in this study are as follows:</p><ul><li>Development of a parametric design and optimization framework for a surface-mounted permanent magnet synchronous motor. In this task, a special emphasis is placed on reducing reliance on materials with a high supply risk, such as rare earth elements.</li><li>Creation of a parametric life cycle assessment model that combines life cycle assessment and optimization-based design to minimize a single-score environmental impact. This model offers insights into the environmental performance of product design and underscores the importance of minimizing environmental impact throughout a product's life cycle.</li><li>Integration of a life cycle costing model, incorporating techno-economic assessment and total cost of ownership perspectives, into the parametric life cycle assessment and optimization-based design models. This model is used to minimize levelized production and driving costs, shedding light on the trade-offs within this family of cost metrics and the optimization of manufacturing systems for motor production.</li><li>Proposal of a circular economy model/algorithm to assess the advantages of integrating the circular economy paradigm during the early design phase. All the mentioned objective functions are considered to study the impacts of applying the circular economy paradigm.</li></ul><p dir="ltr">The contributions of this research can be summarized as follows:</p><ul><li>Utilized a diverse array of analytical methodologies to parameterize the design process of a motor, incorporating the integration of Life Cycle Assessment (LCA) and Techno-Economic Analysis (TEA) models, as well as the incorporation of disassembly planning for informed decision-making in the early stages of design.</li><li>Proposed a generalized objective function denoted as the Supply Risk-equivalent (SR-eq.), aimed at mitigating the risks associated with the dependency on critical materials in product manufacturing.</li><li>Introduced a novel approach for visualizing non-dominated solutions within a multi-objective framework, with experimentation conducted on up to six distinct objectives.</li><li>Substantiated the significance of decarbonizing the electric grid while maintaining competitive cost structures, the importance of advancing non-destructive evaluation (NDE) procedures for assessing the condition of end-of-life (EoL) subassemblies, and optimizing the collection rate of EoL motors.</li></ul><p dir="ltr">Demonstrated that the optimization of technical metrics as surrogate indicators for economic and environmental performance does not necessarily yield designs that are concurrently optimal in economic and environmental terms.</p>
93

Distributed Algorithms for Multi-robot Autonomy

Zehui Lu (18953791) 02 July 2024 (has links)
<p dir="ltr">Autonomous robots can perform dangerous and tedious tasks, eliminating the need for human involvement. To deploy an autonomous robot in the field, a typical planning and control hierarchy is used, consisting of a high-level planner, a mid-level motion planner, and a low-level tracking controller. In applications such as simultaneous localization and mapping, package delivery, logistics, and surveillance, a group of autonomous robots can be more efficient and resilient than a single robot. However, deploying a multi-robot team by directly aggregating each robot's planning hierarchy into a larger, centralized hierarchy faces challenges related to scalability, resilience, and real-time computation. Distributed algorithms offer a promising solution for introducing effective coordination within a network of robots, addressing these issues. This thesis explores the application of distributed algorithms in multi-robot systems, focusing on several essential components required to enable distributed multi-robot coordination, both in general terms and for specific applications.</p>

Page generated in 0.0718 seconds