• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electromagnetic Scattering by Open-Ended Cavities: An Analysis Using Precorrected-FFT Approach

Nie, Xiaochun, Li, Le-Wei 01 1900 (has links)
In this paper, the precorrected-FFT method is used to solve the electromagnetic scattering from two-dimensional cavities of arbitrary shape. The integral equation is discretized by the method of moments and the resultant matrix equation is solved iteratively by the generalized conjugate residual method. Instead of directly computing the matrix-vector multiplication, which requires N² operations, this approach reduces the computation complexity to O(N log N) as well as avoids the storage of large matrices. At the same time, a technique known as the complexifying k is applied to accelerate the convergence of the iterative method in solving this resonance problem. Some examples are considered and excellent agreements of radar cross sections between these computed using the present method and those from the direct solution are observed, demonstrating the feasibility and efficiency of the present method. / Singapore-MIT Alliance (SMA)
2

Fast Analysis of Scattering by Arbitrarily Shaped Three-Dimensional Objects Using the Precorrected-FFT Method

Nie, Xiaochun, Li, Le-Wei 01 1900 (has links)
This paper presents an accurate and efficient method-of-moments solution of the electrical-field integral equation (EFIE) for large, three-dimensional, arbitrarily shaped objects. In this method, the generalized conjugate residual method (GCR) is used to solve the matrix equation iteratively and the precorrected-FFT technique is then employed to accelerate the matrix-vector multiplication in iterations. The precorrected-FFT method eliminates the need to generate and store the usual square impedance matrix, thus leading to a great reduction in memory requirement and execution time. It is at best an O(N log N) algorithm and can be modified to fit a wide variety of systems with different Green’s functions without excessive effort. Numerical results are presented to demonstrate the accuracy and computational efficiency of the technique. / Singapore-MIT Alliance (SMA)

Page generated in 0.1804 seconds