• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

DEVELOPMENT OF AN ELECTRO-HYDRAULIC ACTUATION SYSTEM TO ENABLE ELECTRIFICATION OF MOBILE HYDRAULIC SYSTEMS

Shaoyang Qu (12879053) 15 June 2022 (has links)
<p>The electrification trend affecting off-road vehicles is paving the way toward dedicated electrified hydraulic actuation systems. Although traditional centralized fluid power architectures are still utilized in many applications for low cost, power density, and reliability, nowadays emission policy results in an increasing interest in developing electro-hydraulic actuator (EHA) solutions. EHAs enable non-throttling actuation and energy recuperation during overrunning loads, leading to higher transmission efficiency and lower fuel consumption. These features in energy efficiency make EHAs competitive in meeting emission regulations compared to conventional hydraulic solutions.</p> <p>The key challenge in developing the EHA solution comes from the high cost and space requirements, especially for the adoption of self-contained EHAs in mobile applications. In this study, two architectures for the EHA are proposed, a closed-circuit architecture and an open-circuit one, to determine the most practical and efficient configuration. The most effective open-circuit architecture with distributed concepts is further investigated for implementation, which requires less modification of the mechanical structures and performs more efficiently than the closed-circuit alternative. The proposed EHA is driven by an electro-hydraulic unit (EHU) consisting of a variable-speed electric motor and a fixed-displacement hydraulic pump, which is relatively cost-effective. A novel hydraulic configuration is proposed, which allows the EHA to cover full-speed operating ranges in four quadrants. </p> <p>To verify the EHA design, the behavior of the proposed system should be predicted prior to costly experiments and demonstrations. For this purpose, an integrated simulation model is developed based on the lumped parameter approach in the Amesim environment. The model includes the electric system, the hydraulic system, and the mechanism to be implemented, which are capable of flexible analysis of functionality, efficiency, and thermal performance.</p> <p>In this work, a dedicated test rig for EHA testing is developed. The test rig can help verify EHA performance, test the control algorithm, and diagnose errors before implementing the system on real applications. The experimental results from the test rig also validate the simulation model. An independent load drive of the test rig allows testing all possible  loading conditions of the proposed EHA, thus demonstrating the energy performance in four quadrants. Thermal behavior is investigated with long duty cycles to determine the need for additional cooling equipment. After the validation of the hydraulic configuration, a power electronics setup is added to the test rig, which allows to drive the EHA system with the novel designed EHUs. Validation on the test platform paves the way for implementation in a vehicle. </p> <p>As a final step, the proposed EHA system is implemented in a reference vehicle, a Case New Holland TV380 skid steer loader. A novel designed EHU is adopted to drive the system for technology demonstration. The energy savings capacity of the EHA is investigated in comparison to the baseline measurements of the traditional open-center hydraulic architecture. The impressive savings from the reduction of throttling losses and energy recovery guide the possible commercialization of such EHAs in mobile hydraulic applications. The controller design of the implemented EHA system is investigated with the aim of improving the dynamic performance, e.g., reducing damping oscillation. Basic power management strategies are also studied to integrate EHA with the power train of current hydraulic machines. Regarding future work, based on this research but not within the scope of this study, the proposed EHA system can be adopted with different types of prime movers, such as axial piston machines as the hydraulic part of an EHU. Furthermore, the design approach proposed in this study can help resize the EHA system for other applications with different loading conditions and power requirements, and the energy savings capability can be further investigated. With this, a comprehensive market analysis will be performed for the commercialization of EHA. </p>
12

Efficient and high performing hydraulic systems in mobile machines

Frerichs, Ludger, Hartmann, Karl 03 May 2016 (has links) (PDF)
Hydraulic systems represent a crucial part of the drivetrain of mobile machines. The most important drivers of current developments, increasing energy efficiency and productivity, are leading to certain trends in technology. On a subsystem level, working hydraulics are utilizing effects by improving control functions and by maximum usage of energy recovery potential. Independent metering and displacement control, partly in combination with hybrid concepts, are the dominating approaches. Traction drives gain advantage from optimized power split transmissions, which consequently are being used in a growing number of applications. On the level of components, increase of efficiency and dynamics as well as power density are important trends. Altogether, design of systems and components is more and more based on modular concepts. In this sense, among others, sensors and control elements are being integrated to actuators; electric and hydraulic technology is being merged. In order to achieve maximum efficiency and performance of the entire machine, control of hydraulics has to include the whole drivetrain and the entire mobile machine in its application. In modern words, mobile hydraulic systems are a part of cyber physical systems.
13

Design and Optimization of Controllers for an Electro-Hydraulic System

André, Simon January 2014 (has links)
Electro-Hydraulic (EH) systems are commonly used in the industry for applications that require high power-weight ratios and large driving forces. The EH system studied in this master thesis have recently been upgraded with new hardware components and as a part of this upgrade a new controller was requested. The system consists of a controller that computes a control signal for an electric motor. The motor drives a gear pump that generates a flow of hydraulic fluid. The flow is then directed to a cylinder. The movements of a piston in the cylinder is affected by the flow and the piston position can be measured. The measured piston position is then fed back to the controller and the control loop is complete. The system was previously controlled using a Proportional-Integral-Derivative (PID) controller and the purpose of this thesis is to compare the old controller with alternative control strategies suitable for this application. The evaluation of the controllers is based on both software and hardware simulations and results in a recommendation for final implementation of the best suited controller. The control strategies chosen for investigation are: a retuned PID controller, a PID controller with feed forward from reference, a PID based cascade controller, a Linear Quadratic (LQ) controller, and a Model Predictive Controller (MPC). To synthesize the controllers an approximate model of the system is formed and implemented in the software environment Matlab Simulink. The model is tuned to fit recorded data and provides a decent estimation of the actual system. The proposed control strategies are then simulated and evaluated in Simulink with the model posing as the real system. These simulations resulted in the elimination of the cascade controller as a possible candidate since it proved unstable for large steps in the reference signal. The remaining four controllers were all selected for simulation on the real hardware system. Unfortunately the MPC was never successfully implemented on the hardware due to some unknown compatibility error and hence eliminated as a possible candidate. The three remaining control strategies, PID, PID with feed forward from reference and the LQ controller, were all successfully implemented and simulated on hardware. The results from the hardware simulations compared to simulations made with the old controller, as well as the results from the software simulations, were then evaluated. Depending on the purpose one of two control strategies is recommended for this application. The LQ controller achieved the best overall performance and is presented as the control strategy best suited for this application.
14

[en] NUMERICAL AND EXPERIMENTAL STUDY OF A TWO DEGREES OF FREEDOM ELECTROHYDRAULIC MANIPULATOR / [pt] ESTUDO NUMÉRICO E EXPERIMENTAL DE UM MANIPULADOR ELETRO-HIDRÁULICO DE DOIS GRAUS DE LIBERDADE

WILLIAM SCHROEDER CARDOZO 25 October 2017 (has links)
[pt] O controle de empuxo vetorial (TVC) é usado para o controle de atitude de foguetes aeroespaciais. No caso de propulsão usando combustível líquido, tradicionalmente o bocal é conectado ao corpo do foguete através de uma junta cardânica. Dois atuadores hidráulicos são colocados ao redor do bocal para controlar sua orientação. Nesta tese, o TVC é tratado como uma plataforma robótica de base fixa. Ao invés de usar servo-válvulas comerciais para controlar os atuadores, uma nova válvula de controle é proposta. Primeiro uma plataforma cardânica é considerada com transdutores de posição angular medindo o deslocamento da cruzeta da junta. Em seguida, uma nova configuração da plataforma é proposta substituindo o cardan por uma junta homocinética. Neste caso, a realimentação da posição da plataforma é feito usando um estimador de atitude em tempo real. Este estimador é um filtro complementar baseado em matrizes de orientação que coleta dados de uma central inercial (IMU). A modelagem do sistema começa com a cinemática. Na sequência, a modelagem dinâmica utiliza a formulação de Newton-Euler para obter a equação de movimento. A modelagem do sistema hidráulico é apresentada com o modelo da nova válvula de controle e do atuador. Inicialmente, um controlador puramente proporcional é proposto. Durante a validação experimental é mostrado que devido as características do sistema de atuação, mesmo este simples controlador é preciso e confiável. Em seguida é demonstrado um método para avaliar outras estratégias de controle. A comparação entre a plataforma cardânica e homocinética mostra que, nas condições analisadas, ambas têm um comportamento dinâmico similar. Nas duas configurações da plataforma o sistema se mostrou preciso e confiável. / [en] Thrust Vector Control (TVC) is used for the attitude control of spacecrafts. In the case of liquid-propellant fuel, the nozzle is traditionally connected to the rocket frame through a gimbal. Two hydraulic actuators are placed around the nozzle to control its orientation. In this Thesis, TVC is treated as a fixed base robotic platform. Instead of using commercial servo-valves to control the actuators, a novel control valve is proposed. First a gimbaled platform is considered with two angular position transducers to measure the angular displacement of the joint crosshead. Then, a homokinetic platform configuration is proposed replacing the gimbal by a constant velocity joint. In this case, the platform position feedback is done using a real-time attitude estimator. The estimator is a complementary filter based on orientation matrices that collects data from an inertial measurement unit (IMU). The modeling of the system begins with kinematics. Then, the dynamic modeling uses the Newton-Euler formulation to obtain the equation of motion. The modeling of the electro-hydraulic system is presented with the model of the novel control valve and the linear actuator. Initially, a full proportional controller is proposed. During the experimental validation it is shown that due to the characteristics of the actuation system, even this simple controller is accurate and reliable. Thereafter, method is demonstrated to evaluate novel control strategies. The comparison between the gimbaled and homokinetic platform shows that, under the analyzed conditions, they have a similar dynamic behavior. In both platform configurations the system is accurate and reliable.
15

Electronic Pump Control and Benchmarking of Simulation Tools : AMESim and GT Suite

Joy, Dawn, Sekaran, Karthik January 2011 (has links)
Load sensing pumps in hydraulic system of wheel loaders helps in increasing the energy efficiency of wheel loaders. Present day machines have hydro mechanical load sensing system. After the advent of hydro mechanical load sensing concept, over the years, lots of research has been carried out relevant to electro hydraulic load sensing, trying to control the pump electronically. Currently, Volvo Construction Equipments (VCE) is interested in investigating the possibility of implementing electro hydraulic load sensing system in the wheel loaders. Research works has shown existence of several configurations of electro hydraulic load sensing pumps. Successful simulation results of an electro hydraulic load sensing pump configuration would provide a backing for the proposal of building and testing that configuration of electro hydraulic load sensing pump prototype. Also, the thesis work aims in benchmarking hydraulic system simulation capabilities of AMESim and GT- Suite by simulating the existing hydro mechanical load sensing system in both in both the simulation packages. / The thesis work has been carried out at Virtual Product Development (VPD) division of Volvo Construction Equipments (VCE), Eskilstuna, Sweden.
16

Conceptual Design, Testing And Manufacturing Of An Industrial Type Electro-hydraulic Vacuum Sweeper

Sahin, Emre 01 September 2011 (has links) (PDF)
CONCEPTUAL DESIGN, TESTING AND MANUFACTURING OF AN INDUSTRIAL TYPE ELECTRO-HYDRAULIC VACUUM SWEEPER SAHIN, Emre M.Sc., Department of Mechanical Engineering Supervisor : Prof. Dr. Kahraman ALBAYRAK Co-Supervisor: Prof. Dr. Bilgin KAFTANOGLU September 2011, 156 pages In this thesis, conceptual design, testing, development and manufacturing processes of the cleaning (elevator and fan system) and electro-hydraulic systems of an industrial type vacuum sweeper are presented. Thesis is financially supported by Ministry of Science, Industry and Technology (Turkey) and M&uuml / san A.S. (Makina &Uuml / retim Sanayi ve Ticaret A.S.) under the SAN-TEZ projects with numbers 00028.STZ.2007-1 and 00623.STZ.2010-1. The main purpose is to make critical design changes on existing fan system, designing a new elevator system and eventually obtaining efficient and powerful cleaning system. For design, Catia and SolidWorks softwares are used. Within the SAN-TEZ project, all CFD solutions were provided by Punto Engineering. Unlike many industrial type vacuum sweepers, new design will be electrically and electro-hydraulic controlled. All cleaning system of new &lsquo / M&Uuml / SAN Vacuum Sweeper&rsquo / will be activated by using hydraulic motors (traction system including hydraulic system is driven by the brushless DC electric motor as well) and the power of all these systems is supplied by batteries which are placed in the middle of the vehicle. Elevator and fan system can be considered as a group for a street sweeper for cleaning operations. Fan and elevator systems both gain an important place especially in cleaning operations due to lifting heavy and small particles from the ground. Fan system is used for sucking the small materials and dust by vacuum and elevator system is used to elevate heavier materials such stones, bottles, cans. Therefore, it is essential to design an efficient and powerful fan and elevator system for a street sweeper. The thesis work includes the design, development, supervision of manufacturing, simulation and testing of the cleaning (elevator and fan systems) and electro-hydraulic system of the street cleaners.
17

Energy-efficient steering systems for heavy-duty commercial vehicles

Winkler, Torsten, de Zaaijer, Rik, Schwab, Christian January 2016 (has links)
Besides the braking system the steering system is one of the most important systems on vehicles. The reliability and the performance of a steering system decides on the controllability of the vehicle under normal conditions as well as emergency situations. In everyday use the characteristics, the connectivity to assistance systems and the energy efficiency of the steering system become more and more important to fulfill the increasing demands regarding fuel consumption, carbon dioxide emissions and comfort. To meet these demands, new steering systems must be implemented and new technologies have to be developed. This contribution compares different approaches regarding functionality and energy efficiency to give an indication which system is the most promising solution for future front axle steering systems as well as rear steered axles (tag- or pusher axle) on trucks.
18

A Thermal Analysis of Direct Driven Hydraulics

Minav, Tatiana, Papini, Luca, Pietola, Matti January 2016 (has links)
This paper focuses on thermal analysis of a direct driven hydraulic setup (DDH). DDH combines the benefits of electric with hydraulic technology in compact package with high power density, high performance and good controllability. DDH enables for reduction of parasitic losses for better fuel efficiency and lower operating costs. This one-piece housing design delivers system simplicity and lowers both installation and maintenance costs. Advantages of the presented architecture are the reduced hydraulic tubing and the amount of potential leakage points. The prediction of the thermal behavior and its management represents an open challenge for the system as temperature is a determinant parameter in terms of performance, lifespan and safety. Therefore, the electro-hydraulic model of a DDH involving a variable motor speed, fixed-displacement internal gear pump/motors was developed at system level for thermal analysis. In addition, a generic model was proposed for the electric machine, energy losses dependent on velocity, torque and temperature was validated by measurements under various operative conditions. Results of model investigation predict ricing of temperature during lifting cycle, and flattened during lowering in pimp/motor. Conclusions are drawn concerning the DDH thermal behavior.
19

Návrh elektro-hydraulického ovládání hlavního podvozku a brzd pro malý cvičný letoun / Proposal of electro-hydraulic system of main landing gear actuatuon for small training aeroplane

Skřivánek, Jan January 2018 (has links)
This thesis studies the design of an electro-hydraulic landing gear and brakes control system of a trainer aeroplane. In the first part there is a basic draft of the landing gear kinematics and its loads during gear retraction, flight and landing. Braking conditions are also analysed. The thesis then focuses on the design of hydraulic circuits and their control. Simulations for studying the dynamic characteristics of the braking proportional valve and the course of plane braking were created in Simulink. There is also a brief section about reliability of the proposed system.
20

Efficient and high performing hydraulic systems in mobile machines

Frerichs, Ludger, Hartmann, Karl January 2016 (has links)
Hydraulic systems represent a crucial part of the drivetrain of mobile machines. The most important drivers of current developments, increasing energy efficiency and productivity, are leading to certain trends in technology. On a subsystem level, working hydraulics are utilizing effects by improving control functions and by maximum usage of energy recovery potential. Independent metering and displacement control, partly in combination with hybrid concepts, are the dominating approaches. Traction drives gain advantage from optimized power split transmissions, which consequently are being used in a growing number of applications. On the level of components, increase of efficiency and dynamics as well as power density are important trends. Altogether, design of systems and components is more and more based on modular concepts. In this sense, among others, sensors and control elements are being integrated to actuators; electric and hydraulic technology is being merged. In order to achieve maximum efficiency and performance of the entire machine, control of hydraulics has to include the whole drivetrain and the entire mobile machine in its application. In modern words, mobile hydraulic systems are a part of cyber physical systems.

Page generated in 0.0506 seconds