• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Series-parallel Resonant Converter for Electrochemical Wastewater Treatment

Klement, Kathryn 03 January 2011 (has links)
Advantages of electrochemical wastewater treatment over conventional wastewater treatment include its smaller footprint, modularity, and ability to meet increasingly stringent government regulations. A power supply that can be packaged with an electrochemical stack could make electrochemical wastewater treatment more cost-effective and scalable. For this application, the series and series-parallel resonant converters are suitable power converter candidates. With an output current specification of 100A, the series-parallel resonant converter (SPRC) is superior due to its simpler output stage. The thesis presents the design of a 500W SPRC for a wastewater treatment cell stack. A rudimentary cell model is derived experimentally. The closed loop analysis, controller design and simulation results are presented. The output voltage and current are estimated using sensed quantities extracted from the high voltage, low current primary side. Low voltage experimental results verify the operation of the power stage and voltage estimation circuitry in open loop pulsed operation.
2

A Series-parallel Resonant Converter for Electrochemical Wastewater Treatment

Klement, Kathryn 03 January 2011 (has links)
Advantages of electrochemical wastewater treatment over conventional wastewater treatment include its smaller footprint, modularity, and ability to meet increasingly stringent government regulations. A power supply that can be packaged with an electrochemical stack could make electrochemical wastewater treatment more cost-effective and scalable. For this application, the series and series-parallel resonant converters are suitable power converter candidates. With an output current specification of 100A, the series-parallel resonant converter (SPRC) is superior due to its simpler output stage. The thesis presents the design of a 500W SPRC for a wastewater treatment cell stack. A rudimentary cell model is derived experimentally. The closed loop analysis, controller design and simulation results are presented. The output voltage and current are estimated using sensed quantities extracted from the high voltage, low current primary side. Low voltage experimental results verify the operation of the power stage and voltage estimation circuitry in open loop pulsed operation.

Page generated in 0.1604 seconds