• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical study of flux compression for the conceptual design of a non-explosive FCG

Dickson, Andrew Stuart 31 October 2006 (has links)
Student Number : 9608998A - MSc dissertation - School of Electrical and Information Engineering - Faculty of Engineering and the Built Environment / The history of flux compression is relatively short. One of the founders, a Russian physicist, Sakharov developed the idea of compressing a magnetic field to generate high magnetic fields and from this he also developed a generator to produce current impulses. Most of this initial work was performed in military research laboratories. The first open source literature became available in the 1960s and from there it has become an international research arena. There are two types of flux compression generators, field generators and current generators. These are discussed along with the basic theory of flux compression generators and related physics. The efficiency of generators is often quite low. However in many generators high explosives are used and because of their high energy density, the current or field strength produced is substantially greater then the initial source. This of course limits the locations possible for experimental work and subsequently limits the industrial applications of flux compression generators . This research presents a theoretical design for a non-explosive flux compression generator. The generator is designed to produce a current impulse for tests in laboratory and remote locations. The generator has the advantage of being non-destructive, therefore reducing costs, and allowing for repeatable experiments. The design also reduces the possibilities or many of the loss mechanisms.
2

An Analysis of Strain and Displacement within Elastically Averaged Electromagnetic Formed Joints

Sattler, Andrew M. 18 May 2015 (has links)
No description available.

Page generated in 0.1282 seconds