Spelling suggestions: "subject:"electromagnetic""
301 |
High resolution time-resolved imaging system in the vacuum ultraviolet regionJang, Yuseong 01 January 2014 (has links)
High-power debris-free vacuum ultraviolet (VUV) light sources have applications in several scientific and engineering areas, such as high volume manufacturing lithography and inspection tools in the semiconductor industry, as well as other applications in material processing and photochemistry. For the past decades, the semiconductor industry has been driven by what is called "Moore's Law". The entire semiconductor industry relies on this rule, which requires chip makers to pack transistors more tightly with every new generation of chips, shrinking the size of transistors. The ability to solve roadmap challenges is, at least partly, proportional to our ability to measure them. The focus of this thesis is on imaging transient VUV laser plasma sources with specialized reflective imaging optics for metrology applications. The plasma dynamics in novel laser-based Zinc and Tin plasma sources will be discussed. The Schwarzschild optical system was installed to investigate the time evolution of the plasma size in the VUV region at wavelengths of 172 nm and 194 nm. The outcomes are valuable for interpreting the dynamics of low-temperature plasma and to optimize laser-based VUV light sources.
|
302 |
Generation and characterization of sub-70 isolated attosecond pulsesZhang, Qi 01 January 2014 (has links)
Dynamics occurring on microscopic scales, such as electronic motion inside atoms and molecules, are governed by quantum mechanics. However, the Schroedinger equation is usually too complicated to solve analytically for systems other than the hydrogen atom. Even for some simple atoms such as helium, it still takes months to do a full numerical analysis. Therefore, practical problems are often solved only after simplification. The results are then compared with the experimental outcome in both the spectral and temporal domain. For accurate experimental comparison, temporal resolution on the attosecond scale is required. This had not been achieved until the first demonstration of the single attosecond pulse in 2001. After this breakthrough, "attophysics" immediately became a hot field in the physics and optics community. While the attosecond pulse has served as an irreplaceable tool in many fundamental research studies of ultrafast dynamics, the pulse generation process itself is an interesting topic in the ultrafast field. When an intense femtosecond laser is tightly focused on a gaseous target, electrons inside the neutral atoms are ripped away through tunneling ionization. Under certain circumstances, the electrons are able to reunite with the parent ions and release photon bursts lasting only tens to hundreds of attoseconds. This process repeats itself every half cycle of the driving pulse, generating a train of single attosecond pulses which lasts longer than one femtosecond. To achieve true temporal resolution on the attosecond time scale, single isolated attosecond pulses are required, meaning only one attosecond pulse can be produced per driving pulse. Up to now, there are only a few methods which have been demonstrated experimentally to generate isolated attosecond pulses. Pioneering work generated single attosecond pulse using a carrier-envelope phase-stabilized 3.3 fs laser pulse, which is out of reach for most research groups. An alternative method termed as polarization gating generated single attosecond pulses with 5 fs driving pulses, which is still difficult to achieve experimentally. Most recently, a new technique termed as Double Optical Gating (DOG) was developed in our group to allow the generation of single attosecond pulse with longer driving pulse durations. For example, isolated 150 as pulses were demonstrated with a 25 fs driving laser directly from a commercially-available Ti:Sapphire amplifier. Isolated attosecond pulses as short as 107 as have been demonstrated with the DOG scheme before this work. Here, we employ this method to shorten the pulse duration even further, demonstrating world-record isolated 67 as pulses. Optical pulses with attosecond duration are the shortest controllable process up to now and are much faster than the electron response times in any electronic devices. In consequence, it is also a challenge to characterize attosecond pulses experimentally, especially when they feature a broadband spectrum. Similar challenges have previously been met in characterizing femtosecond laser pulses, with many schemes already proposed and well-demonstrated experimentally. Similar schemes can be applied in characterizing attosecond pulses with narrow bandwidth. The limitation of these techniques is presented here, and a method recently developed to overcome those limitations is discussed. At last, several experimental advances toward the characterization of the isolated 25 as pulses, which is one atomic unit time, are discussed briefly.
|
303 |
Bio-Inspired Optimization of Ultra-Wideband Patch Antennas Using Graphics Processing Unit AccelerationVyhnalek, Brian 30 April 2014 (has links)
No description available.
|
304 |
Microstructuring of Nickel Thin Films and Property Modification of Nickel Oxide Films by Pulsed Laser IrradiationItapu, Srikanth January 2017 (has links)
No description available.
|
305 |
Novel Techniques for Enhancing SAR Imaging using Spatially Variant ApodizationEvers, Chris 20 July 2011 (has links)
No description available.
|
306 |
A Small-Perturbation Automatic-Differentiation (SPAD) Method for Evaluating Uncertainty in Computational ElectromagneticsGilbert, Michael Stephen 20 December 2012 (has links)
No description available.
|
307 |
Tfdtlm: a New Computationally Efficient Frequency Domain Tlm Based on Transient Analysis TechniquesSalama, Iman Mohamed 01 October 1997 (has links)
The TLM was initially formulated and developed in the time domain. One key issue in a time domain analysis approach is the computational efficiency, where a single impulsive excitation could yield information over a wide frequency range. Also, it may be more natural and realistic to model non linear and frequency dispersive properties in the time domain rather than in the frequency domain. However, in some circumstances, frequency domain analysis may be more appealing. This might be due to the fact that the traditional teaching of electromagnetics emphasizes frequency domain concepts as frequency dispersive constitutive parameters, complex frequency dependent impedances and reflection coefficients. It might be even easier and more direct to be able to model these parameters in frequency domain rather than trying to synthesize an equivalent time domain model. The only limitation of frequency domain analysis, is that the analysis has to be repeated at every frequency point in the frequency range of interest.
In this work, a new frequency domain TLM (FDTLM) approach is introduced which combines the superior features of both the time domain and the frequency domain TLM. The approach is based on a steady state analysis in the frequency domain using transient analysis techniques and hence is referred to as TFDTLM. In this approach, the link lines impedances are derived in the frequency domain and are chosen to model the frequency dispersive material parameters. The impedances and propagation constants are allowed to be complex and frequency dependent. Consequently, the TFDTLM can provide more accurate modeling for wave propagation in a frequency dispersive medium. The approach was inspired by the concept of bounce diagram in the time domain and the equivalent frequency domain bounce diagram.
To make the TFDTLM approach computationally efficient as compared to other frequency domain TLM approaches, it was critical to maintain some relationship between the mesh response at one frequency point and any other frequency point. The goal was to be able to extract all the frequency domain information in a wide frequency range by performing only one simulation. To achieve this, the transitions between two adjacent cell in all media expressed by (exp(-gamma*L)) have to be expressed in terms of the propagation factor of some reference medium chosen to be the medium with the least propagation delay. This was done with the aid of a digital filter approximation that can be implemented iteratively inside the TLM mesh. The filter can be thought of as some type of compensation equivalent to the stubs in a time domain TLM, yet more accurate and more general. An important advantage of the TFDTLM is that it can easily be interfaced with existing time domain TLM schemes as well as absorbing boundary conditions originally developed for time domain TLM with the slightest modifications. The TFDTLM is implemented a three dimensional mesh and the superior performance of the new approach in modeling lossy inhomogeneous media is demonstrated.
The new approach in addition to being computationally efficient as compared to other frequency domain TLM methods, has proven to have superior dispersion behavior in modeling lossy inhomogeneous media as compared to time domain TLM . / Ph. D.
|
308 |
The Non-Linear Electrodynamic Coupling Between the Solar Wind, Magnetosphere and IonosphereWilder, Frederick Durand 05 May 2011 (has links)
The polar electric potential imposed on the ionosphere by coupling between the earth's magnetosphere and the solar wind has been shown to have a non-linear response to the interplanetary electric field (IEF). This dissertation presents an empirical study of this polar cap potential saturation phenomenon. First, the saturation of the reverse convection potential under northward is demonstrated using bin-averaged SuperDARN data. Then, the saturation reverse convection potential is shown to saturate at a higher value at higher solar wind plasma beta. The reverse convection flow velocity is then compared with cross-polar cap flows under southward IMF under summer, winter and equinox conditions. It is demonstrated that the reverse convection flow exhibits the opposite seasonal behavior to cross polar cap flow under southward IMF. Then, an interhemispheric case study is performed to provide an explanation for the seasonal behavior of the reverse convection potential. It is found using DMSP particle precipitation data that the reverse convection cells in the winter circulate at least partially on closed field lines. Finally, SuperDARN and DMSP data are merged to provide polar cap potential measurements for a statistical study of polar cap potential saturation under southward IMF. It is found that the extent of polar cap potential saturation increases with increasing Alfvenic Mach number, and has no significant relation to Alfven wing transmission coefficient or solar wind dynamic pressure. / Ph. D.
|
309 |
Analysis of Aperture Radiation Using Computer Visualization and Image-Processing TechniquesMonkevich, James Matthew 07 May 1998 (has links)
In order to accurately describe the behavior of an antenna, one needs to understand the radiation mechanisms that govern its operation. One way to gain such an insight is to view the fields and currents present on a radiating structure. Unfortunately, in close proximity to an antenna empirical techniques fail because the measurement probe alters the operation of the radiating structure. Computational methods offer a solution to this problem. By simulating the operation of an antenna, one can obtain electromagnetic field data near (or even internal to) a radiating structure. However, these computationally intense techniques often generate extremely large data sets that cannot be adequately interpreted using traditional graphical approaches.
A visualization capability is developed that allows an analysis of the above-mentioned data sets. With this technique, the data is viewed from a unique, global perspective. This format is well suited for analytical investigations as well as debugging during modeling and simulation. An illustrative example is provided in the context of a rectangular microstrip patch antenna. A comparison is performed between the visualized data and the theory of operation for the microstrip patch in order to demonstrate that radiation mechanisms can be obtained visually.
An additional analysis tool is developed using Gabor filters and image-processing techniques. This tool allows one to detect and filter electromagnetic waves propagating with different velocities (both speed and direction). By doing so, each mode of an antenna can be analyzed independently. The fields of a multi-moded, open-ended rectangular waveguide are analyzed in order to demonstrate the effectiveness of these techniques. / Master of Science
|
310 |
Interferometry in diffusive systems: Theory, limitation to its practical application and its use in Bayesian estimation of material propertiesShamsalsadati, Sharmin 01 May 2013 (has links)
Interferometry in geosciences uses mathematical techniques to image subsurface properties. This method turns a receiver in to a virtual source through utilizing either random noises or engineered sources. The method in seismology has been discussed extensively. Electromagnetic interferometry at high frequencies with coupled electromagnetic fields was developed in the past. However, the problem was not addressed for diffusive electromagnetic fields where the quasi-static limit holds. One of the objectives of this dissertation was to theoretically derive the impulse response of the Earth for low-frequency electromagnetic fields.
Applying the theory of interferometry in the regions where the wavefields are diffusive requires volumetrically distributed sources in an infinite domain. That precondition imposed by the theory is not practical in experiments. Hence, the aim of this study was to quantify the important areas and distribution of sources that makes it possible to apply the theory in practice through conducting numerical experiments. Results of the numerical analysis in double half-space models revealed that for surface-based exploration scenarios sources are required to reside in a region with higher diffusivity. In contrast, when the receivers straddle an interface, as in borehole experiments, there is no universal rule for which region is more important; it depends on the frequency, receiver separation and also diffusivity contrast between the layers and varies for different scenarios. Time-series analysis of the sources confirmed previous findings that the accuracy of the Green\'s function retrieval is a function of both source density and its width. Extending previous works in homogenous media into inhomogeneous models, it was found that sources must be distributed asymmetrically in the system, and extend deeper into the high diffusivity region in comparison to the low diffusivity area.
The findings were applied in a three-layered example with a reservoir layer between two impermeable layers. Bayesian statistical inversion of the data obtained by interferometry was then used to estimate the fluid diffusivity (and permeability) along with associated uncertainties. The inversion results determined the estimated model parameters in the form of probability distributions. The output demonstrated that the algorithm converges closely to the true model. / Ph. D.
|
Page generated in 0.0644 seconds