• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Excitonic fine structure and nonequilibrium phase transition of the electron-hole system in diamond / ダイヤモンドの励起子微細構造と電子正孔系における非平衡相転移の研究

Hazama, Yuji 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18784号 / 理博第4042号 / 新制||理||1582(附属図書館) / 31735 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 中 暢子, 教授 田中 耕一郎, 教授 金光 義彦 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
2

Bose-Einstein Condensation of Magnetic Excitons in Semiconductor Quantum Wells

Boţan, Vitalie January 2006 (has links)
<p>In this thesis regimes of quantum degeneracy of electrons and holes in semiconductor quantum wells in a strong magnetic field are studied theoretically. The coherent pairing of electrons and holes results in the formation of Bose-Einstein condensate of magnetic excitons in a single-particle state with wave vector <b>K</b>. We show that correlation effects due to coherent excitations drastically change the properties of excitonic gas, making possible the formation of a novel metastable state of dielectric liquid phase with positive compressibility consisting of condensed magnetoexcitons with finite momentum. On the other hand, virtual transitions to excited Landau levels cause a repulsive interaction between excitons with zero momentum, and the ground state of the system in this case is a Bose condensed gas of weakly repulsive excitons. We introduce explicitly the damping rate of the exciton level and show that three different phases can be realized in a single quantum well depending on the exciton density: excitonic dielectric liquid surrounded by weakly interacting gas of condensed excitons versus metallic electron-hole liquid. In the double quantum well system the phase transition from the excitonic dielectric liquid phase to the crystalline state of electrons and holes is predicted with the increase of the interwell separation and damping rate.</p><p>We used a framework of Green's function to investigate the collective elementary excitations of the system in the presence of Bose-Einstein condensate, introducing "anomalous" two-particle Green's functions and symmetry breaking terms into the Hamiltonian. The analytical solution of secular equation was obtained in the Hartree-Fock approximation and energy spectra were calculated. The Coulomb interactions in the system results in a multiple-branch structure of the collective excitations energy spectrum. Systematic classification of the branches is proposed, and the condition of the stability of the condensed excitonic phase is discussed.</p>
3

Bose-Einstein Condensation of Magnetic Excitons in Semiconductor Quantum Wells

Boţan, Vitalie January 2006 (has links)
In this thesis regimes of quantum degeneracy of electrons and holes in semiconductor quantum wells in a strong magnetic field are studied theoretically. The coherent pairing of electrons and holes results in the formation of Bose-Einstein condensate of magnetic excitons in a single-particle state with wave vector <b>K</b>. We show that correlation effects due to coherent excitations drastically change the properties of excitonic gas, making possible the formation of a novel metastable state of dielectric liquid phase with positive compressibility consisting of condensed magnetoexcitons with finite momentum. On the other hand, virtual transitions to excited Landau levels cause a repulsive interaction between excitons with zero momentum, and the ground state of the system in this case is a Bose condensed gas of weakly repulsive excitons. We introduce explicitly the damping rate of the exciton level and show that three different phases can be realized in a single quantum well depending on the exciton density: excitonic dielectric liquid surrounded by weakly interacting gas of condensed excitons versus metallic electron-hole liquid. In the double quantum well system the phase transition from the excitonic dielectric liquid phase to the crystalline state of electrons and holes is predicted with the increase of the interwell separation and damping rate. We used a framework of Green's function to investigate the collective elementary excitations of the system in the presence of Bose-Einstein condensate, introducing "anomalous" two-particle Green's functions and symmetry breaking terms into the Hamiltonian. The analytical solution of secular equation was obtained in the Hartree-Fock approximation and energy spectra were calculated. The Coulomb interactions in the system results in a multiple-branch structure of the collective excitations energy spectrum. Systematic classification of the branches is proposed, and the condition of the stability of the condensed excitonic phase is discussed.
4

Dynamika fotoexcitovaných nosičů náboje v diamantu / Dynamics of photoexcited charge-carriers in diamond

Popelář, Tomáš January 2012 (has links)
Title: Dynamics of photoexcited charge carriers in diamond Author: Bc. Tomas Popelar Department: KCHFO MFF UK Supervisor: prof. RNDr. Petr Maly DrSc., KCHFO MFF UK Abstract: In this work we examine the luminescence from diamond in the strong excitation regime by one-photon or two-photon absorption of femtosecond laser beam. Measured sample was very pure type IIa diamond prepared by CVD method which was held in cryostat in order to measure temperature dependant luminescence in range from 12 K to 300 K. The signal was collected and analyzed either by spectrograph or streak camera so we gained time-integrated and time-resolved results. We analyzed only the part of the spectrum containing contributions from electron-hole liquid (for low temperatures), free excitons and probably exciton complexes. For higher temperatures where the condensation is not possible the contribution from e-h plasma was too weak compared to free excitons and was only detectable by time-resolved measurements. Other time-dependant results were obtained by pump and probe experiment with which we examined a change of life- times based on mode of excitation (one-photon or two-photon one) and also an influence of other beams on the condensation into electron-hole drops. Keywords: CVD diamond, dynamics, e-h liquid, excitons
5

Femtosekundová laserová spektroskopie diamantu / Femtosecond laser spectroscopy of diamond

Bažíková, Sára January 2017 (has links)
Due to its extraordinary features and wide bandwidth (5.47 eV), diamond is a very promising material in the field of optoelectronics. By absorbing ultraviolet light, excited charge carriers - electrons and holes - are created in the diamond, which can create excitons due to mutual Coulomb interaction. For low temperatures and high concentrations of photoexcitated carriers, carriers can condense into electron-hole droplets and form an electron-hole liquid. The aim of this diploma thesis is to follow up with previous research at the department and to examine the dynamics of electron-hole liquid in bulk diamond at low temperatures. Using femtosecond laser spectroscopy, we investigate the influence of excitation wavelengths on the dynamics of electron-hole liquid condensation.

Page generated in 0.0753 seconds