• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 206
  • 21
  • 12
  • 12
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 335
  • 335
  • 49
  • 48
  • 46
  • 31
  • 28
  • 27
  • 27
  • 25
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Ballistic electron transport in graphene nanodevices and billiards

Datseris, George 13 September 2019 (has links)
No description available.
162

Electronic Properties and Structure of Functionalized Graphene

Plachinda, Pavel 01 January 2012 (has links)
The trend over the last 50 years of down-scaling the silicon transistor to achieve faster computations has led to doubling of the number of transistors and computation speed over about every two years. However, this trend cannot be maintained due to the fundamental limitations of silicon as the main material for the semiconducting industry. Therefore, there is an active search for exploration of alternate materials. Among the possible candidates that can may [sic] be able to replace silicon is graphene which has recently gained the most attention. Unique properties of graphene include exceedingly high carrier mobility, tunable band gap, huge optical density of a monolayer, anomalous quantum Hall effect, and many others. To be suitable for microelectronic applications the material should be semiconductive, i.e. have a non-zero band gap. Pristine graphene is a semimetal, but by the virtue of doping the graphene surface with different molecules and radicals a band gap can be opened. Because the electronic properties of all materials are intimately related to their atomic structure, characterization of molecular and electronic structure of functionalizing groups is of high interest. The ab-inito (from the first principles) calculations provide a unique opportunity to study the influence of the dopants and thus allow exploration of the physical phenomena in functionalized graphene structures. This ability paves the road to probe the properties based on the intuitive structural information only. A great advantage of this approach lies in the opportunity for quick screening of various atomic structures. We conducted a series of ab-inito investigations of graphene functionalized with covalently and hapticly bound groups, and demonstrated possible practical usage of functionalized graphene for microelectronic and optical applications. This investigation showed that it is possible [to] produce band gaps in graphene (i.e., produce semiconducting graphene) of about 1 eV, without degrading the carrier mobility. This was archived by considering the influence of those adducts on electronic band structure and conductivity properties.
163

Modulation of electron transport by Metformin in cardiac protection: role of complex I

Mohsin, Ahmed Abdul Hussein 01 January 2018 (has links)
Modulation of mitochondrial complex I during reperfusion reduces cardiac injury. Complex I exists in two structural states: active (A) and deactive (D) with transition from A→D during ischemia. Reperfusion reactivates D→A with an increase in ROS production. Metformin preserves the D-Form. Our aim was to study the contribution of maintenance of deactivation of complex I during early reperfusion by metformin to protect against ischemia reperfusion injury. Our results showed that metformin decreased H9c2 cardiomyoblast apoptosis and total cell death following simulated ischemia for six hours followed by reoxygenation for twenty four hours compared to untreated cells. Reactive oxygen species (ROS) generation was reduced at the onset of reoxygenation with metformin treatment. Metformin also prevented the acute reactivation of complex I during reoxygenation following 10 minutes of hypoxia accompanied by decreased ROS generation. In addition, the content of C/EBP homologous protein was decreased in metformin treated cells, suggesting that metformin treatment decreased endoplasmic reticulum stress. 5' adenosine monophosphate-activated protein kinase was activated in our model independent of metformin treatment. Intriguingly, metformin protects in 5' adenosine monophosphate-activated protein kinase knock down system. Surprisingly, we found that metformin successfully downregulated p53 compared to untreated simulated ischemia reoxygenation. We sought potential metformin related impact on anti-apoptotic protein B-cell lymphoma 2. Our results showed the expression of the anti-apoptotic protein B-cell lymphoma 2 was markedly decreased in SI6/RO24 and metformin increased expression of B-cell lymphoma 2. Metformin, likely by partial inhibition of complex I with decreased ROS generation, resulted in less sulfhydryl modification and decreased modification of thiol groups by nitrosylation. We propose that the slowing down of activation of complex I at early stage of reperfusion by acute use of high dose metformin would be protective in cells and hearts against ischemia reperfusion injury. This potential new mechanism of protection is relevant at the onset of reperfusion to directly modulate electron transport to achieve cardiac protection and to decrease cardiac cell injury. Modulation of mitochondrial complex I during reperfusion reduces cardiac injury. Complex I exists in two structural states: active (A) and deactive (D) with transition from A→D during ischemia. Reperfusion reactivates D→A with an increase in ROS production. Metformin preserves the D-Form. Our aim was to study the contribution of maintenance of deactivation of complex I during early reperfusion by metformin to protect against ischemia reperfusion injury. Our results showed that metformin decreased H9c2 cardiomyoblast apoptosis and total cell death following simulated ischemia for six hours followed by reoxygenation for twenty four hours compared to untreated cells. Reactive oxygen species (ROS) generation was reduced at the onset of reoxygenation with metformin treatment. Metformin also prevented the acute reactivation of complex I during reoxygenation following 10 minutes of hypoxia accompanied by decreased ROS generation. In addition, the content of C/EBP homologous protein was decreased in metformin treated cells, suggesting that metformin treatment decreased endoplasmic reticulum stress. 5' adenosine monophosphate-activated protein kinase was activated in our model independent of metformin treatment. Intriguingly, metformin protects in 5' adenosine monophosphate-activated protein kinase knock down system. Surprisingly, we found that metformin successfully downregulated p53 compared to untreated simulated ischemia reoxygenation. We sought potential metformin related impact on anti-apoptotic protein B-cell lymphoma 2. Our results showed the expression of the anti-apoptotic protein B-cell lymphoma 2 was markedly decreased in SI6/RO24 and metformin increased expression of B-cell lymphoma 2. Metformin, likely by partial inhibition of complex I with decreased ROS generation, resulted in less sulfhydryl modification and decreased modification of thiol groups by nitrosylation. We propose that the slowing down of activation of complex I at early stage of reperfusion by acute use of high dose metformin would be protective in cells and hearts against ischemia reperfusion injury. This potential new mechanism of protection is relevant at the onset of reperfusion to directly modulate electron transport to achieve cardiac protection and to decrease cardiac cell injury.
164

Electron transport in microbial chlorate respiration

Smedja Bäcklund, Anna January 2009 (has links)
<p><!-- /* Font Definitions */ @font-face {font-family:Garamond; panose-1:2 2 4 4 3 3 1 1 8 3; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:647 0 0 0 159 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";} @page Section1 {size:612.0pt 792.0pt; margin:72.0pt 90.0pt 72.0pt 90.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} --></p><p>Several bacterial species are capable to use perchlorate and/or chlorate as an alternative electron acceptor in absence of oxygen. Microbial respiration of oxochlorates is important for biotreatment of effluent from industries where oxochlorates are produced or handled. One of these species, the Gram-negative <em>Ideonella dechloratans</em>, is able to reduce chlorate but not perchlorate. Two soluble enzymes, chlorate reductase and chlorite dismutase, participate in the conversion of chlorate into chloride and molecular oxygen. The present study deals with the electron transport from the membrane-bound components to the periplasmic chlorate reductase. Soluble <em>c</em> cytochromes were investigated for their ability to serve as electron donors to chlorate reductase. The results show that a 6 kDa <em>c </em>cytochrome serves as electron donor for chlorate reductase. This cytochrome also serves as electron donor for a terminal oxidase in the reduction of oxygen that is produced in the course of chlorate respiration. A gene encoding a soluble <em>c</em> cytochrome was found in close proximity to the gene cluster for chlorate reduction. This gene was cloned and expressed heterologously, and the resulting protein was investigated as a candidate electron donor for chlorate reductase. Electron transfer from this protein could not be demonstrated, suggesting that the gene product does not serve as immediate electron donor for chlorate reductase.</p><p> </p>
165

First principles simulations of electron transport at the molecule-solid interface

Ren, Hao January 2010 (has links)
In this thesis I concentrate on the description of electron transport properties of microscopic objects, including molecular junctions and nano junctions, in particular, inelastic electron tunneling in surface-adsorbate systems are examined with more contemplations. Boosted by the rapid advance in experimental techniques at the microscopic scale, various electric experiments and measurements sprung up in the last decade. Electric devices, such as transistors, switches, wires, etc. are expected to be integrated into circuit and performing like traditional semiconductor integrated circuit (IC). On the other hand, detailed information about transport properties also provides new physical observable quantities to characterize the systems. For molecular electronics, which is in the state of growing up, its further applications demands more thorough understanding of the underlying mechanism, for instance, the effects of molecular configuration and conformation, inter- or intra-molecular interactions, molecular-substrate interactions, and so on. Inelastic electron tunneling spectroscopy (IETS), which reflects vibration features of the system, is also a finger print property, and can thus be employed to afford the responsibility of single molecular identification with the help of other experimental techniques and theoretical simulations.There are two parts of work presented in this thesis, the first one is devoted to the calculation of electron transport properties of molecular or nano junctions: we have designed a negative differential resistance (NDR) device based on graphene nanoribbons (GNRs), where the latter is a star material in scientific committee since its birth;The transport properties of DNA base-pair junctions are also examined by theoretical calculation, relevant experimental results on DNA sequencing have been explained and detailed issues are suggested.The second part focused on the simulation of scanning tunneling microscope mediated IETS (STM-IETS). We have implemented a numerical scheme to calculate the inelastic tunneling intensity based on Tersoff-Hamann approximation and finite difference method, benchmark results agree well with experimental and previous theoretical ones; Two applications of single molecular chemical identification are also presented following benchmarking. / QC20100630
166

Electron transport in microbial chlorate respiration

Smedja Bäcklund, Anna January 2009 (has links)
Several bacterial species are capable to use perchlorate and/or chlorate as an alternative electron acceptor in absence of oxygen. Microbial respiration of oxochlorates is important for biotreatment of effluent from industries where oxochlorates are produced or handled. One of these species, the Gram-negative Ideonella dechloratans, is able to reduce chlorate but not perchlorate. Two soluble enzymes, chlorate reductase and chlorite dismutase, participate in the conversion of chlorate into chloride and molecular oxygen. The present study deals with the electron transport from the membrane-bound components to the periplasmic chlorate reductase. Soluble c cytochromes were investigated for their ability to serve as electron donors to chlorate reductase. The results show that a 6 kDa c cytochrome serves as electron donor for chlorate reductase. This cytochrome also serves as electron donor for a terminal oxidase in the reduction of oxygen that is produced in the course of chlorate respiration. A gene encoding a soluble c cytochrome was found in close proximity to the gene cluster for chlorate reduction. This gene was cloned and expressed heterologously, and the resulting protein was investigated as a candidate electron donor for chlorate reductase. Electron transfer from this protein could not be demonstrated, suggesting that the gene product does not serve as immediate electron donor for chlorate reductase.
167

Molecular Electronics : A Theoretical Study of Electronic Structure of Bulk and Interfaces

Unge, Mikael January 2006 (has links)
This thesis deals with theoretical studies of the electronic structure of molecules used in the context of molecular electronics. Both studies with model Hamiltonians and first principle calculations have been performed. The materials studied include molecular crystals of pentacene and DNA, which are used as active material in field-effect transistors and as tentative molecular wires, respectively. The molecular magnet compound TCNE and surface modification by means of chemisorption of TDAE on gold are also studied. Molecular crystals of pentacene are reported to have the highest field-effect mobility values for organic thin film field-effect transistors. The conduction process in field-effect transistors applications occurs in a single layer of the molecular crystal. Hence, in studies of transport properties molecular crystals of pentacene can be considered as a two dimensional system. An open question of these system is if the charge transport is bandlike or if as a result of disorder is a hopping process. We address this question in two of the included papers, paper I and paper II. The conducting properties of DNA are of interest for a broad scientific community. Biologist for understanding of oxidatively damaged DNA and physicist and the electronics community for use as a molecular wire. Some reports on the subject classifies DNA as a conductor while other report insulating behavior. The outcome of the investigations are heavily dependent on the type of DNA being studied, clearly there is a big difference between the natural and more or less random sequence in, e.g., λ-DNA and the highly ordered syntethic poly(G)-poly(C) DNA. It has been suggested that long-range correlation would yield delocalized states, i.e., bandlike transport, in natural DNA, especially in the human chromosome 22. In paper III we show that this is not the case. In general our results show that DNA containing an approximately equal amount of the four basis is an insulator in a static picture. An emerging research field is spintronics. In spintronic devices the spin of the charge carrier is as important as the charge. One can envision a device where spin alone is the carrier of information. In realizing spintronic devices, materials that are both magnetic and semiconducting are needed. Systems that exhibit both these properties are organic-based magnets. In paper IV the electronic structure of the molecular magnet compound TCNE is studied, both experimentally and theoretically. The injection of carriers from metal contacts to organic semiconductors is central to the performance of organic based devices. The interface between the metal contact and the organic material has been pointed out to be one of the device parameters that most significantly influences the device performance. This relates to the process of injection of charge carriers in to the organic material. In some contact and organic material combinations the energy barrier for charge injection can be very high. The barrier can be reduced by modify the interface dipole, this is achieved by a monolayer of adsorbed molecules at the interface. The molecule TDAE chemisorbed on gold is studied in paper V.
168

Studies of Charge Transport Processes in Dye-sensitized Solar Cells

Fredin, Kristofer January 2007 (has links)
Dye-sensitized solar cells (DSCs) have attained considerable attention during the last decade because of the potential of becoming a low cost alternative to silicon based solar cells. Although efficiencies exceeding 10% in full sunlight have been presented, major improvements of the system are however limited. Electron transport is one of the processes in the cell and is of major importance for the overall performance. It is further a complex process because the transport medium is a mesoporous film and the pores are completely filled by an electrolyte with high ionic strength, resulting in electron-ion interactions. Therefore, present models describing electron transport include simplifications, which limit the practical use, in terms of improving the DSC, because the included model parameters usually have an effective nature. This thesis focuses in particular on the influence of the mesoporous film on electron transport and also on the influence of electron-ion interactions. In order to model diffusion, which is assumed to be the transport process for electrons in the DSC, Brownian motion simulations were performed and spatial restrictions, representing the influence of the mesoporous film, were introduced by using representative models for the structure. The simulations revealed that the diffusion coefficient is approximately half the value for electrons and ions in mesoporous systems. To study the influence of ions, a simulation model was constructed in where electric fields were calculated with respect to the net charge densities, resulting from the different charge carrier distributions. The simulations showed that electron transport is highly dependent on the nature of the ions, supporting an ambipolar diffusion transport model. Experimentally, it was found that the transport process is dependent on the wavelength of the incident light; we found that the extracted current was composed of two components for green light illumination, one fast and one slow. The slow component showed similar trends as the normal current. Also we found that the transport coefficient scaled linearly with film thickness for a fixed current, which questions diffusion as transport process. Other experiments, investigating various effects in the DSC, such as the effect of different cations in the electrolyte, are also presented. / QC 20100708
169

Charge Transport Processes in Mesoporous Photoelectrochemical Systems

Nissfolk, Jarl January 2009 (has links)
During the last decade, the dye sensitised solar cell (DSC) has attracted much attention. The technology has a potential to act as a new generation of photovoltaic device, it has also increased our knowledge within the field of photoelectrochemistry. The materials used in the DSC have been used in other technologies, such as electrochromic displays. This thesis examines how such systems can be analysed to understand their properties from their components. Both of the considered device technologies consist of a thin mesoporous semiconductor film immersed in an electrolyte. The study starts by investigating some of the fundamental properties of the mesoporous semiconductor and its interface with the electrolyte. This gives rise to the charge-voltage relationship for the devices, which is related to the chemical capacitance and electronic energy levels for the materials. In particular,special attention is given to the DSC and the properties of the charge carriers in the semiconductor. For the DSC, several techniques have been developed in order to understand the processes of transport and recombination for the charge carriers in the semiconductor film, which are vitally important for performance. In this thesis, particular focus is given to light modulation techniques and electrical analysis with impedance spectroscopy. The transportproperties show for both techniques a nonlinear behaviour, which is explained with the trapping model. The DSC solar cell is analysed in order to interpret the transport measurements for film thickness optimisation. DSC cells with new semiconductor materials, such as ZnO, were analysed with impedance measurements to provide new insights into the optimisation of the performance of the photoelectrochemical solar cell technology. / QC 20100804
170

Thermal Modeling and Characterization of Nanoscale Metallic Interconnects

Gurrum, Siva P. 12 January 2006 (has links)
Temperature rise due to Joule heating of on-chip interconnects can severely affect performance and reliability of next generation microprocessors. Thermal predictions become difficult due to large number of features, and the impact of electron size effects on electrical and thermal transport. It is thus necessary to develop efficient numerical approaches, and accurate metal and dielectric thermal characterization techniques. In this research, analytical, numerical, and experimental techniques were developed to enable accurate and efficient predictions of interconnect temperature rise. A finite element based compact thermal model was developed to obtain temperature rise with fewer elements and acceptable accuracy. Temperature drop across the interconnect cross-section was ignored. The compact model performed better than standard finite element model in two and three-dimensional case studies, and the predictions for a real world structure agreed closely with experimentally measured temperature rise. A numerical solution was developed for electron transport based on the Boltzmann Transport Equation (BTE). This deterministic technique, based on the path integral solution of BTE within the relaxation time approximation, free electron model, and linear response, was applied to a constriction in a finite size thin metallic film. A correlation for effective conductance was obtained for different constriction sizes. The Atomic Force Microscope (AFM) based Scanning Joule Expansion Microscopy (SJEM) was used to develop a new technique to measure thermal conductivity of thin metallic films in the size effect regime. This technique does not require suspended metal structures, and thus preserves the original electron interface scattering characteristics. The thermal conductivities of 43 nm and 131 nm gold films were extracted to be 82 W/mK and 162 W/mK respectively. These measurements were close to Wiedemann-Franz Law predictions and are significantly smaller than the bulk value of 318 W/mK due to electron size effects. The technique can potentially be applied to interconnects in the sub-100 nm regime. A semi-analytical solution for the 3-omega method was derived to account for thermal conduction within the metallic heater. It is shown that significant errors can result when the previous solution is applied for anisotropic thermal conductivity measurements.

Page generated in 0.2632 seconds