• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 8
  • 8
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The development of an electron gun for performing ultrafast electron diffraction experiments

Erasmus, Nicolas 12 1900 (has links)
Thesis (MSc (Physics))--Stellenbosch University, 2009. / ENGLISH ABSTRACT: This thesis aims to comprehensively discuss ultrafast electron di raction and its role in temporally resolving ultrafast dynamics on the molecular level. Theory on electron pulses and electron pulse propagation will be covered, but the main focus will be on the method, equipment and experimental setup required to generate sub-picosecond electron pulses, which are needed to perform time resolved experiments. The design and construction of an electron gun needed to produce the electron pulses will be shown in detail, while preliminary pulse characterization experiments will also be illustrated. An introduction into the theory of electron diffraction patterns and how to interpret these diffraction patterns will conclude the thesis. / AFRIKAANSE OPSOMMING: Hierdie tesis het ten doel om ultravinnige elektrondi raksie deeglik te bespreek asook die rol wat dit speel om ultravinnige tyd-dinamika op 'n molekulêre vlak op te los. Die teorie van elektonpulse en die voortplanting van elektronpulse sal gedek word, maar die fokus sal op die metode, gereedskap en eksperimentele opstelling wees wat benodig is om sub-pikosekonde elektronpulse te genereer. Die ontwerp en konstruksie van 'n elektrongeweer, wat benodig word om elektronpulse te produseer, sal in detail bespreek word, terwyl aanvanklike pulskarakterisasie eksperimente ook illustreer sal word. 'n Inleiding tot die teorie van elektrondi raksie patrone en hoe om hulle te interpreteer sal die tesis afsluit.
12

A convergent beam electron diffraction study of some rare-earth perovskite oxides

Jones, Daniel M. January 2008 (has links)
This work describes detailed convergent beam electron diffraction (CBED) studies of GdAlO3 and LaAlO3 perovskites. CBED patterns tilted away from major zone axes have been found to have high sensitivity to the presence of mirror or glide mirror symmetry. Such patterns confirm to high accuracy that the space group of GdAlO3 is orthorhombic, Pnma. Tilted patterns from this well characterised structure also serve as benchmarks against which similar patterns may be compared. In the case of LaAlO3, tilted patterns enable the space group to be confirmed as rhombohedral R3c, previously claimed to be cubic (Fm3c) by CBED. Furthermore, no evidence for the low symmetry (I2/a or F1) phases proposed for LaAlO3 has been observed. The LaAlO3 study also gives a careful assessment of the influence of tilted specimen surfaces on the CBED data. Within the qualitative scope of these experiments, no symmetry degrading effects could be observed. Some preliminary Quantitative CBED (QCBED) data from LaAlO3 is also presented. This shows it will be possible to make a detailed study of the bonding charge density (Δρ) in this material when combined with X-ray diffraction data. Also included is a brief CBED study of LaFeO3, a material that is isostructural with GdAlO3. Although this is restricted to exact zone axis patterns, it is noted that tilted patterns have significant potential to improve the quality of the symmetry determination.
13

Introducing organic molecular crystals into ultrafast electron diffraction

Rohwer, Andrea Berenike 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Organic molecular salts have a wide range of physical properties which can be chemically tailored by minor variations of their substituents. These characteristics include high degrees of anisotropy, electrical conductivity ranging from superconducting to insulating, and structural changes in the crystal lattice during first order phase transitions brought about by minimal changes in temperature, effective pressure, and in some cases even light. Hence, these materials are particularly interesting for the development of molecular electronics and also as study materials in solid state physics. The family of copper-dimethyl-dicyanoquinone-diimine (Cu(DMe-DCNQI)2) salts forms part of the radical anion salt subclass of organic molecular crystals and is of particular interest due to its extraordinarily high conductivity compared to other quasi one-dimensional organic conductors. Its metal-to-insulator phase transition is characterised by conductivity jumps across several orders of magnitude within a few kelvin. Over the past three decades the metallic and insulating phases, as well as the transition behaviour have been investigated extensively utilising a broad spectrum of methods amongst others electrical conductivity, electron spin resonance, and re ectivity measurements, x-ray photoelectron and infrared spectroscopy, x-ray diffraction, and dilatometry. Fast light-switching between phases has been observed in partially deuterated forms of Cu(DCNQI)2 on sub-100-ps time scales. Furthermore, the phase transition is believed to be induced by a deformation of the crystalline lattice and a charge density wave formation which are detectable in diffraction images. Therefore we want to investigate this metal-to-insulator phase transition structurally and temporally via ultrafast electron diffraction. The technique of ultrafast electron diffraction employs the fundamentals of pump-probe spectroscopy: One of the two femtosecond pulsed laser beams excites the thin, crystalline sample, while the other - after being converted into a pulsed electron beam via the photoelectric effect - forms a diffraction image of the sample's lattice structure. The arrival time of the two pulses at the sample can be varied by a few femtoseconds with respect to each other enabling the resolution of ultrafast structural dynamics of the crystal's atomic lattice via electron diffraction. During the work presented in this thesis the sample preparation and characterisation leading to a successful introduction of Cu(DCNQI)2 into our ultrafast electron diffraction setup is presented. A diffraction pattern of comparable quality to that of a commercially available transmission electron microscope was recorded of the metallic state of partially deuterated d6 Cu(DCNQI)2. Subsequent analysis of the obtained diffraction data and further studies of the low temperature state { including simulations as well as experiments { have narrowed down the factors still making the diffraction pattern evasive. Possible solutions to experimental challenges are proposed to make the documentation of structural ultrafast dynamics in these organic molecular salts an attainable goal in the future. / AFRIKAANSE OPSOMMING: Organiese molekulêre soute het `n wye verskeidenheid van fisiese eienskappe wat chemies verander kan word deur geringe variasie in die samestelling van die sout. Hierdie eienskappe sluit in `n hoë graad van anisotropie, elektriese geleidingsvermoë wat strek van supergeleiding tot elektriese isolasie, en strukturele veranderinge in die kristalstruktuur tydens eerste orde fase-oorgange wat veroorsaak word deur geringe veranderinge in temperature, effektiewe druk en in sommige gevalle selfs lig. Gevolglik is hierdie material besonder interessant vir die ontwikkeling van molekulêre elektronika en ook as studiemateriaal in vastetoestandfisika. Die familie van koperdimetieldisianokinoondiimien (Cu(DMe-DCNQI)2) soute vorm `n deel van die radikaal-anioon-sout subklas van organiese molekulêre kristalle en is van besondere belang as gevolg van hulle buitengewone hoë elektriese geleidingsvermoë in vergelyking met ander kwasi-eendimensionele organiese geleiers. Die metaal-na-isolator fase-oorgang van hierdie kristal word gekenmerk deur die verandering van die geleidingsvermoë met verskeie ordegroottes binne `n paar kelvin. Gedurende die laaste drie dekades is die metaal en isolator fases, asook die oorgangsgedrag deeglik ondersoek met behulp van `n wye verskeidenheid van metodes wat onder andere elektriese geleidingsvermoë, elektron-spin resonans en reeksiemetings, x-straal fotoelektron en infrarooi spektroskopie, x-straal diffraksie en dilatometrie insluit. Vinnige skakeling tussen fases is waargeneem in gedeeltelik gedeuteerde vorms van Cu(DCNQI)2 op `n sub-100-ps tydskaal. Daar word verder geglo dat die fase-oorgang geïnduseer word deur `n deformasie van die kristalstruktuur en die vorming van `n ladingsdigtheidgolf wat meetbaar is in elektrondiffraksiebeelde. Om hierdie rede wil ons die metaal-na-isolator fase-oorgang se struktuur- en tydafhanklikheid ondersoek deur gebruik te maak van ultra-vinnige elektron diffraksie. Die tegniek van ultra-vinnige elektron diffraksie maak gebruik van die beginsels van pomp-toets spektroskopie: Een van die twee femtosekonde laserpulse wek die dun kristallyne monster op, terwyl die ander na omskakeling in `n elektronpuls via die foto-elektriese effek `n diffraksiebeeld van die monster se kristalstruktuur vorm. Die aankomtyd van die twee pulse by die monster kan met `n paar femtosekondes ten opsigte van mekaar verander word om die tydresolusie van die ultra-vinnige strukturele dinamika van die kristal se atoomstruktuur deur elektrondiffraksie moontlik te maak. In hierdie tesis word die monstervoorbereiding en karakterisering wat gelei het tot suksesvolle eksperimente op Cu(DCNQI)2 in ons ultra-vinnige elektron diffraksie opstelling behandel. `n Diffraksie patroon waarvan die kwaliteit vergelykbaar is met die van `n kommersiëel beskikbare transmissie elektron mikroskoop is gemeet vir die metaalfase van gedeeltelik gedeuteerde d6 Cu(DCNQI)2. Daaropvolgende analiese van die gemete diffraksiedata en verdere studies van die lae temperatuur toestand wat simulasies sowel as eksperimente insluit het `n klein aantal faktore uitgewys wat steeds die deteksie van die isolatorfase se ladingsdigtheidgolf se kenmerkende diffraksiepatroon verhoed. Moontlike oplossings tot eksperimentele uitdagings word voorgestel om die dokumentering van strukturele ultra-vinnige dinamika in hierdie organiese molekulêre soute `n haalbare toekomstige doelwit te maak.
14

Structural dynamics of 1T-TiSe2 using femtosecond electron diffraction

Suleiman, Aminat Oyiza 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Trilayered transition metal dichalcogenides such as our sample (1T-TiSe2) have been studied for many years as systems with strong electron-electron and electron-phonon correlations. The main attraction to this family of compound is its potential to exhibit ground state phenomena known as charge density waves whose detailed physical origin has been controversially determined. In this study, we have used an ultrafast femtosecond laser based on a pump-probe technique, namely ultrafast electron diffraction, to investigate these exotic features associated with the crystal. A pump laser pulse photo-excites the crystal from its ground state and the probe pulse (ultrashort electron pulse) takes the snapshot of the evolution of the lattice generating an electron diffraction pattern of the crystal. Hence the dynamical structural behaviour can be observed in time with a subpicosecond temporal resolution. As a hexagonal close-packed structure, its signature is expected to be seen in the diffraction pattern in both a steady-state and electron time-resolved femtosecond electron diffraction. In addition, simulations of electron diffractions pattern for room and low temperature structural data via a software called Simulation and Analysis of Electron diffraction (SAED) have been carried out. Clear signatures of charge density waves were seen at low temperature. / AFRIKAANSE OPSOMMING: Drie-laag oorgangsmetaal dikhalkogeniedes soos ons voorbeeld (1T-TiSe2), word reeds vir baie jare bestudeer as sisteme met sterk elektron-elektron en elektron-fonon korrelasies. Die hoof aantrekkingskrag van hierdie sisteme is die verskynsel van ladingdigtheidsgolwe in die grondtoestand. Die fisiese oorsprong van hierdie ladingdigtheidsgolwe was bepaal te midde van verskeie teenstrydighede. In hierdie studie, maak ons gebruik van die ultravinnige femtosekonde laser gebaseerde aktiveer-interogeer tegniek, genaamd ultravinnige elektron diffraksie (UED) om unicke eienskappe wat met die kristal geassosieer is te bestudeer. In UED wek ’n ultravinnige laserpuls (aktivering) die kristal op vanaf die grondtoestand waartydens n ultravinnige elektronpuls (interogering) ’n foto neem van die evolusie van die elektron diffraksiepatroon wat deur die kristalrooster gegenereer word. Hierdie wisselwerking van die interogerings elektronpuls en die sisteem kan gevolglik teen verskeie vasgetelde tye toegelaat word. Dus kan die dinamiese strukturele gedrag waargeneem word met ’n tydresolusie in die orde van die elektronpuls (sub-pikosekondes). Siende dat die kristal ’n diggepakte-heksagonale struktuur vorm, behoort die kenmerkende diffraksiepatroon daarvan waarneembaar te wees in beide die bestendige diffraksie en femtosekonde elektron diffraksie tegnieke. In hierdie konteks was duidelike tekens van ladingdigtheidsgolwe waargeneem. Benewens was daar ook simulasies uitgevoer om die elektron diffraksiepatrone asook die strukturele data by kamer en lae temperature vas te pen. Die sagteware wat hiervoor gebruik word is genaamd Simulasie en Ontleding van Elektronendiffraksie (SAED) - Simulation and Analysis of Electron Diffraction (SAED).
15

Gas-phase electron-diffraction investigations of, I. WF���, ReF���, OsF���, IrF���, PtF���, O������PtF������, II. 3-aminoacrolein, III. 3-chloro-1-propanol, IV. 2,2',5,5'-tetramethyl-1,1'-distibacerrocene

Richardson, Alan D. 10 December 1996 (has links)
Graduation date: 1997
16

RF compression of electron bunches applied to ultrafast electron diffraction

Chatelain, Robert P., 1982- January 2008 (has links)
The dynamics of atomic scale structures during structural change can be studied by Ultrafast Electron Diffraction (UED). The time resolution needed to reveal the fastest dynamics is 100 fs. Sub-angstrom structural resolution becomes possible with 1-1000 pC of charge necessary for diffraction pattern analysis during subtle structural changes. This combination of requirements cannot currently be realized due to the space-charge temporal broadening inherent to bunches of electrons of high fluence and short temporal duration. Simulations show that the incorporation of a specially designed Radio-Frequncy (RF) cavity into the UED apparatus removes this technical limitation. The RF cavity reverses the near linear position-momentum distribution of the temporally broadened electron bunch, causing the bunch to recompress itself as it propagates. It is found that our proposed method allows for sub-100 fs bunches with maximum charge of 0.6 pC, almost 3 orders of magnitude improvement over today's state of the art.
17

RF compression of electron bunches applied to ultrafast electron diffraction

Chatelain, Robert P., 1982- January 2008 (has links)
No description available.
18

Phase transitions in transition metal dichalcogenides studied by femtosecond electron diffraction

Haupt, Kerstin Anna 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Low-dimensional materials are known to undergo phase transitions to differently or- dered states, when cooled to lower temperatures. These phases often show a periodic modulation of the charge density (called a charge density wave – CDW) coupled with a periodic perturbation of the crystal lattice (called a periodic lattice distortion – PLD). Although many experiments have been performed and much has been learnt about CDW phases in low-dimensional materials, the reasons for their existence are still not fully understood yet. Many processes, involving either strong electron–electron or electron–lattice coupling, have been observed which all might play a role in explaining the formation of different phases under different conditions. With the availability of femtosecond lasers it has become possible to study materials under highly nonequilibrium conditions. By suddenly introducing a known amount of energy into the system, the equilibrium state is disturbed and the subsequent relax- ation processes are then observed on timescales of structural and electronic responses. These experiments can deliver valuable information about the complex interactions between the different constituents of condensed matter, which would be inaccessible under equilibrium conditions. We use time resolved electron diffraction to investigate the behaviour of a CDW system perturbed by a short laser pulse. From the observed changes in the diffraction patterns we can directly deduce changes in the lattice structure of our sample. A femtosecond electron diffraction setup was developed at the Laser Research In- stitute in Stellenbosch, South Africa. Short laser pulses produce photo electrons which are accelerated to an energy of 30 keV. Despite space charge broadening effects, elec- tron pulses shorter than 500 fs at sample position can be achieved. Technical details of this system and its characterisation as well as sample preparation techniques and analysis methods are described in detail in this work. Measurements on two members of the quasi-two-dimensional transition metal di- chalcogenides, namely 4Hb-TaSe2 and 1T-TaS2, are shown and discussed. Both show fast (subpicosecond) changes due to the suppression of the PLD and a rapid heating of the lattice. When the induced temperature rise heats the sample above a phase tran- sition temperature, a complete transformation into the new phase was observed. For 4Hb-TaSe2 we found that the recovery to the original state is significantly slower if the PLD was completely suppressed compared to only disturbing it. On 1T-TaS2 we could not only study the suppression of the original phase but also the formation of the higher energetic CDW phase. Long (100 ps) time constants were found for the tran- sition between the two phases. These suggest the presence of an energy barrier which has to be overcome in order to change the CDW phase. Pinning of the CDW by de- fects in the crystal structure result in such an energy barrier and consequently lead to a phase of domain growth which is considerably slower than pure electron or lattice dynamics. / AFRIKAANSE OPSOMMING: Dit is bekend dat lae-dimensionele materie fase oorgange ondergaan na anders ge- ori¨enteerde toestande wanneer afgekoel word tot laer temperature. Hierdie fases toon dikwels ’n periodiese modulasie van die elektron digtheid (genoem ’n “charge density wave” – CDW), tesame met ’n periodiese effek op die kristalrooster (genoem ’n “peri- odic lattice distortion” – PLD). Alhoewel baie eksperimente al uitgevoer is en al baie geleer is oor hierdie CDW fase, is die redes vir hul bestaan nog steeds nie ten volle verstaan nie. Baie prosesse, wat of sterk elektron–elektron of elektron–fonon interaksie toon, is al waargeneem en kan ’n rol speel in die verduideliking van die vorming van die verskillende fases onder verskillende omstandighede. Met die beskikbaarheid van femtosekonde lasers is dit nou moontlik om materie onder hoogs nie-ewewig voorwaardes te bestudeer. Deur skielik ’n bekende hoeveel- heid energie in die stelsel in te voer, word die ewewigstaat versteur en word die daar- opvolgende ontspanning prosesse waargeneem op die tydskaal van atomies struktu- rele en elektroniese bewiging. Hierdie eksperimente kan waardevolle inligting lewer oor die komplekse interaksies tussen die verskillende atomiese komponente van ge- kondenseerde materie, wat ontoeganklik sou wees onder ewewig voorwaardes. Ons gebruik elektrondiffraksie met tyd resolusie van onder ’n pikosekonde om die gedrag van ’n CDW stelsel te ondersoek nadat dit versteur is deur ’n kort laser puls. Van die waargenome veranderinge in die diffraksie patrone kan ons direk aflei watse veranderinge die kristalstruktuur van ons monster ondergaan. ’n Femtosekonde elektronendiffraksie opstelling is ontwikkel by die Lasernavors- ingsinstituut in Stellenbosch, Suid-Afrika. Kort laser pulse produseer foto-elektrone wat dan na ’n energie van 30 keV versnel word. Ten spyte van Coulomb afstoting ef- fekte, kan elektron pulse korter as 500 fs by die monster posisie bereik word. Tegniese besonderhede van hierdie opstelling, tegnieke van die voorbereiding van monsters asook analise metodes word volledig in hierdie tesis beskryf. Metings op twee voorbeelde van kwasi-tweedimensionele semi-metale, naamlik 4Hb-TaSe2 en 1T-TaS2, word gewys en bespreek. Beide wys ’n vinnige (subpikosekon- de) verandering as gevolg van die versteuring van die PLD en ’n vinnige verhitting van die kristalrooster. Wanneer die ge¨ınduseerde temperatuur bo die fase oorgang tempe- ratuur styg, is ’n volledige transformasie na die nuwe fase waargeneem. Vir 4Hb-TaSe2 het ons gevind dat die herstelling na die oorspronklike toestand aansienlik stadiger is as die PLD heeltemal viernietig is in vergelyking met as die PLD net versteur is. Met 1T-TaS2 kon ons nie net alleenlik die vernietiging van die oorspronklike fase sien nie, maar ook die vorming van ’n ho¨er energie CDW fase. Lang (100 ps) tydkonstante is gevind vir die oorgang tussen die twee fases. Hierdie dui op die teenwoordigheid van ’n energie-versperring wat eers oorkom moet word om die CDW fase voledig te ver- ander. Vaspenning van die CDW deur defekte in die kristalstruktuur veroorsaak so’n energie versperring en gevolglik lei dit tot ’n fase van groeiende CDW gebiede wat heelwat stadiger as pure elektron of kritalrooster dinamika is.
19

Ultrafast electron diffraction : source development, diffractometer design and pulse characterisation

Kassier, Gunther Horst 12 1900 (has links)
Thesis (PhD (Physics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Ultrafast Electron Diffraction (UED) is a rapidly maturing field which allows investigation of the evolution of atomic arrangement in solids on timescales comparable to the vibrational period of their constituent atoms (~10-13 s). The technique is an amalgamation of conventional high energy electron diffraction methods and pump-probe spectroscopy with femtosecond (1 fs = 10-15 s) laser pulses. Ultrafast pulsed electron sources generally suffer from limitations on the attainable electron number per pulse (brightness) due to Coulomb repulsion among the electrons. In this dissertation, the design and construction of a compact UED source capable of delivering sub-300 fs electron pulses suitable for diffraction experiments and containing about 5000 electrons per shot is described. The setup has been characterised by measurement of the transverse beam size and angular spread, and through recording and analyzing an electron diffraction pattern from a titanium foil. Measurement of the temporal duration of fs electron pulses is not trivial, and a specialised compact streak camera operating in accumulation mode has been developed as part of this study. A sub-200 fs temporal resolution has been achieved, and the dependence of temporal duration on electron number per pulse was investigated for the current UED source. The observed trends correlate well with detailed electron bunch simulations. In order to investigate ultrafast processes on samples that cannot be probed repeatedly, it becomes necessary to significantly increase the brightness of current state of the art compact sources such as the one constructed in the present study. UED sources employing electron pulse compression techniques offer this possibility. Traditional pulse compression schemes based on RF cavities, while simple in principle, pose significant technical challenges in their realisation. The current thesis describes two novel UED pulse compression methods developed by the author: achromatic reflectron compression and pulsed cavity compression. Both concepts are expected to be easier to realise than conventional RF compression. Detailed simulations predict that such sources can attain a brightness improvement of more than one order of magnitude over compact sources that do not employ compression techniques. In addition, such sources show much promise for the attainment of pulse durations in the sub-100 fs range. / AFRIKAANSE OPSOMMING: Ultra vinnige elektron diffraksie is ‘n meettegniek wat tans in die proses is om vinnige ontwikkeling te ondergaan. Die tegniek het ten doel om strukturele omsettingsprosesse op ‘n lengteskaal van atoombindings en ‘n tydskaal van die vibrasie periode van atome in materie, ongeveer 10-13 s, te ondersoek. Dit word bewerkstellig deur die spasieresolusievermoë van gewone hoë energie elektron diffraksie met die tydresolusievermoë van femtosekonde (1 fs = 10-15 s) laserspektroskopie te kombineer. Die aantal elektrone per puls (intensiteit) van ultravinnige gepulsde elektronbronne word beperk deur die Coulomb afstootingskragte tussen die elektrone. Hierdie dissertasie beskryf die ontwerp en konstruksie van ‘n kompakte ultravinnige elektron bron. Die elektronpulse wat geproduseer word bevat tot 5000 elektrone per puls met ‘n tyd durasie van minder as 300 fs, en is geskik vir diffraksie eksperimente. Die aparaat is gekarakteriseer deur die volgende metings: elektronpulsdiameter, straaldivergensie, en ‘n titaan foelie se statiese diffraksie patroon. Dit is nie triviaal om die durasie van femtosekonde elektronpulse te meet nie, en n spesiale kompakte akkumulerende “streak camera” is vir die doeleindes van hierdie projek onwikkel. Die tydresolusie van hierdie “streak camera” is beter as 200 fs, en die afhanklikheid van die pulsdurasie wat deur die ultravinnige elektron bron geproduseer word as n funksie van die elektrongetal per puls is met behulp van hierdie toestel bepaal. Die resultate klop redelik goed met gedetaileerde simulasies van die elektron puls dinamika. Die karakterisasie van monsters wat nie herhaaldelik gemeet kan word nie vereis verkieslik ‘n nog hoër pulsintensiteit as wat met huidige bronne bereik kan word. ‘N verdere doelstelling is dus om ultravinnige elektron bronne te ontwikkel wat pulse met meer elektrone per puls kan genereer. Dit kan bewerkstellig word deur bronne wat van elektron puls kompressie tegnieke gebruik maak. Die tradisionele manier waarop dít gedoen word is deur middel van n kontinu gedrewe radio frekwensie holte. Hierdie metode gaan egter gepaard met aanmerklik hoë tegniese uitdagings. Om hierdie rede het die outeur twee alternatiewe puls kompressie konsepte ontwikkel: akromatiese reflektron kompressie and gepulsde holte kompressie. Albei konsepte sal waarskeinlik makliker wees om te realiseer as die tradisionele radio frekwensie kompressie, en is deur middel van gedetaileerde simulasies geverifiseer. Hierdie simulasies voorspel dat die intensiteit van genoemde bronne met ten minste n grooteorde meer kan wees as wat tans met kompakte ultravinnige elektron bronne moontlik is. Verder blyk dit dat sulke bronne n pulsdurasie van minder as 100 fs kan bereik.
20

Spatially resolved and operando characterization of cathode degradation in Li-ion batteries

Hestenes, Julia Carmen January 2024 (has links)
The global energy transition, involving the widespread adoption of electric vehicles and grid-scale energy storage, demands energy storage devices made up of abundant, inexpensive minerals. For this to be achieved, the large Co content in conventional Li-ion battery cathodes (e.g., LiCoO₂) must be replaced while also maintaining or improving the energy density of the battery. Alternative low-Co and Co-free materials (e.g., layered LiNixMnyCozO₂, spinel LiNi₀.₅Mn₁.₅O₄, and olivine LiFePO₄) are promising alternatives due to their theoretically higher energy densities or improved safety properties from the industry standards. However, in practice, these materials exhibit both bulk and interfacial instabilities that limit their practical energy density and cycle lifetime. It is well known that reactions between the delithiated (charged) cathode surface with the electrolyte generates electrolyte decomposition species that form an interphase layer called the cathode electrolyte interphase (CEI), where such reactions are concomitant with a crystallographic reconstruction of the surface of the bulk material. The CEI is air sensitive, disordered, nanometers thick and evolves as a function of state of charge and cycle number, making it difficult to fully understand its composition and effect on device performance. The dynamic nature of the CEI necessitates development of chemical characterization tools that can analyze surface reactivity during battery operation. Commercial cathode films are also composites including not just the electrochemically active material but also conductive carbon additive and polymer binder, meaning we need spatially resolved tools to study CEI composition across the film to isolate reactivity by film component. In this thesis, we have developed and applied spatially resolved and operando characterization tools to study the CEI of low-Co and Co-free cathode materials and use these data to pinpoint the degradation reactions at play during battery operation. In the first chapter, we introduce the three most prevalent types of cathode materials (layered, spinels, and olivines) used in Li-ion batteries. We then highlight recent progress in the analytical characterization tools that have been developed to elucidate CEI composition, spatial arrangement, and formation pathways during battery operation while discussing the difference in surface reactivity between each cathode active material as revealed by these techniques. Major findings from my own thesis work, detailed in following chapters, are discussed in parallel within this broader context. Finally, equipped with a deeper understanding of the CEI and the processes that lead to its formation, we discuss what remains to be discovered and enabled by optimizing these complex interfaces. The second chapter investigates the composition of the CEI formed by the Li-rich layered cathode material, Li₂RuO₃, to better understand performance decline in this class of materials. To bridge this gap in understanding, we use solid-state NMR (SSNMR) and surface-sensitive dynamic nuclear polarization (DNP) NMR to achieve high resolution compositional assignment of the CEI. We show that the CEI that forms on Li₂RuO₃, when cycled in carbonate-containing electrolytes, is similar to the solid electrolyte interphase (SEI) that has been observed on anode materials, containing components such as polyethylene oxide (PEO) structures, Li acetate, carbonates, and LiF. The CEI composition deposited on the cathode surface on charge is chemically distinct from that observed upon discharge, supporting the notion of crosstalk between the SEI and the CEI, with Li+-coordinating species leaving the CEI during delithiation. We use electrochemical impedance spectroscopy (EIS) to assess the impedance of the CEI on Li₂RuO₃ as a function of state of charge in connection with the migration of CEI species as identified with NMR. Migration of the outer CEI combined with the accumulation of poor ionic conducting components on the static inner CEI may contribute to the loss of performance over time in Li-excess cathode materials. This work demonstrates the utility of SSNMR for studying electrolyte decomposition at the cathode-electrolyte interface which is then applied in the following chapter to more commercially relevant materials. In the third chapter, we study the CEI and surface reactivity of the Ni-rich layered material LiNi₀.₈Mn₀.₁Co₀.₁O₂ (NMC811). The high specific capacities of Ni-rich transition-metal oxides have garnered immense interest for improving the energy density of Li-ion batteries. However, Ni-rich cathodes suffer from interfacial instabilities that lead to formation of electrochemically inactive phases at the cathode particle surface as well as the formation of a CEI layer on the composite surface during electrochemical cycling. We use a combination of ex situ SSNMR spectroscopy and X-ray photoemission electron microscopy (XPEEM) to provide chemical and spatial information, on the nanometer length scale, on the CEI deposited on NMC811 composite cathode films. XPEEM elemental maps offer insight into the lateral arrangement of the electrolyte decomposition products that comprise the CEI and paramagnetic interactions (assessed with electron paramagnetic resonance (EPR) and relaxation measurements) in 13C SSNMR provide information on the radial arrangement of the CEI from the NMC811 particles outward. Using this approach, we find that LiF, Li₂CO₃, and carboxy-containing structures are directly appended to NMC811 active particles, whereas soluble species detected during in situ 1H and 19F solution NMR experiments (e.g., alkyl carbonates, HF, and vinyl compounds) are randomly deposited on the composite surface. We show that the combined approach of ex situ SSNMR and XPEEM, in conjunction with in situ solution NMR, allows spatially resolved, molecular-level characterization of paramagnetic surfaces and new insights into electrolyte oxidation mechanisms in porous electrode films. The in situ solution NMR cell developed here is one of the first of its kind developed specifically for studying electrolyte decomposition products during or directly after battery operation, which is further developed in the next chapter. The fourth chapter focuses on studying the surface reactivity of the high-voltage LiNi₀.₅Mn₁.₅O₄ (LNMO) spinel cathode material. Unfortunately, LNMO-containing batteries suffer from poor cycling performance because of the intrinsically coupled processes of electrolyte oxidation and transition metal dissolution that occurs at high voltage. In this work, we use operando EPR and NMR spectroscopies to study these high voltage reactions, applying the in situ cell design from the previous chapter to operando conditions (characterization during battery charging). We demonstrate that transition metal dissolution in LNMO is tightly coupled to HF formation (and thus, electrolyte oxidation reactions as detected with operando and in situ solution NMR), indicative of an acid-driven disproportionation reaction that occurs during delithiation (battery charging). Leveraging the temporal resolution (s-min) of magnetic resonance, we find that the LNMO particles accelerate the rate of LiPF6 decomposition and subsequent Mn²⁺ dissolution, possibly due to the acidic nature of terminal Mn-OH groups and protic species generated upon oxidizing the solvents. X-ray photoemission electron microscopy (XPEEM) provides surface-sensitive and localized X-ray absorption spectroscopy (XAS) measurements, in addition to X-ray photoelectron spectroscopy (XPS), that indicate disproportionation is enabled by surface reconstruction upon charging, which leads to surface Mn³⁺ sites on the LNMO particle surface that can disproportionate into Mn²⁺(dissolved) and Mn⁴⁺(s). During discharge of the battery, we observe high quantities of metal fluorides (in particular, MnF₂) in the cathode electrolyte interphase (CEI) on LNMO as well as the conductive carbon additives in the composite. Electronic conductivity measurements indicate that the MnF₂ decreases film conductivity by threefold compared to LiF, suggesting that this CEI component may impede both the ionic and electronic properties of the cathode. Ultimately, to prevent transition metal dissolution and the associated side reactions in spinel-type cathodes (particularly those that operate at high voltages like LNMO), the use of electrolytes that offer improved anodic stability and prevent acid byproducts will likely be necessary. In the fifth chapter, we conduct an in situ X-ray spectroscopy, electron microscopy, and electron diffraction experiment to study the oxidation of the surface of Li metal, which is of critical importance for next generation Li metal batteries. Elemental Li is one of the most promising anode materials for high energy density Li batteries if it can replace graphite because it increases the specific capacity by an order of magnitude. However, Li metal is extremely reactive and is easily oxidized by air and moisture, even under inert conditions (e.g., in argon-filled gloveboxes, ultrahigh vacuum chambers). The industrial production of Li metal anodes, their surface evolution upon contact with the electrolyte, and electrodeposition behavior upon battery cycling all rely on the initial oxidative processes that take place prior to cell assembly. To better understand Li metal oxidation, we deposit pure Li on a Cu substrate and dose the Li deposit with various amounts of oxygen gas. During this experiment, we monitor the surface composition in situ using low-energy electron microscopy (LEEM), low-energy electron diffraction (LEED), and XPS measurements. We show that by evaporating Li onto Cu substrates, we can bypass long sputtering times needed to study commercial Li foils that usually exhibit alkali metal impurities and thick contamination layers from their external environment. Combined insights from LEED, LEEM and DFT calculations indicate that upon oxygen dosing of this ultrapure Li film, oxygen adsorbs to Li, forming a disordered layer, followed by (111) oriented polycrystalline Li₂O growth. DFT was particularly instrumental in elucidating the precise work function of the surface for the intermediate oxide phases (timescale of seconds) to correlate with trends observed via in situ LEEM imaging experiments. To conclude, we reflect on the overarching insight on cathode degradation that we have learned from these studies and discuss remaining knowledge gaps in the field. We highlight promising future avenues to study for stabilizing the cathode-electrolyte interface of these materials, such as adapting the characterization methods developed here for more high throughput study of next generation electrolyte formulations.

Page generated in 0.1007 seconds