• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiplexed Electrospray Emitters for Highly Conductive and Corrosive Fluids

Li, Liurui 14 June 2017 (has links)
This thesis reports the design, fabrication, and operation of silicone based multiplexed electrospray (MES) emitters. After reviewing the feasibility of utilizing electrospray as a scalable thin film deposition technique as well as the advantages and limitations of prior MES emitters, we present a design rationale for MES suitable for highly conductive and corrosive fluids. Then we customized a 1064nm fiber laser micromachining system to precisely and rapidly machine silicone sheet and silicon wafers. Laser energy and path are judicially chosen to create clean and round micro posts that form the external structure of the nozzles. For MES with low flow rate per nozzle, it is of vital importance to evenly distribute the liquid into each nozzle on the entire MES array by controlling the pressure drop inside each fluid flow channel. To this end, we modeled the dimension of microfluidic channels that introduce flow impedance overwhelming surface tension at the nozzle tip. We presented laser microfabrication techniques for fabricating two typical types of microfluidic channels: the through-hole array on conductive silicone sheets and the in-plane microfluidic channel on silicon wafers. Next, we developed a convenient assemble process for the integration of three layers (distributor layer, extractor layer, and collector layer) of the MES emitter. The uniformity of the flow rate among nozzles on MES emitters was investigated by observing the overall spray profiles and measuring the diameter of each jet. The results suggest that the silicone-based MES emitters are feasible for spraying highly conductive and corrosive liquids. The MES emitter developed in this thesis may become a promising tool in the scalable manufacturing of thin film perovskite solar cells. / Master of Science / Liquid sprays have widespread applications such as spray coating, spray drying, spray pyrolysis, and spray cooling. Among various types of sprays, electrohydrodynamic spray (electrospray) has several unique properties such as quasi-monodispersity, tunable droplet size from a few micrometer to nanometers, and compatible with roll-to-roll processing of advanced materials. On the other hand, solution-processed perovskite solar cells have attracted immense research interest recently: within the past seven years, efficiencies of perovskite solar cells have rapidly increased from 3.8% to over 20%. Electrospray is a potential film deposition technique to replace spin coating for continuously fabricating thin-film perovskite solar cells with large areas and virtually no material waste. However, two major challenges exist for electrospraying liquid solutions of perovskite precursors. First, the solution is highly corrosive due to lead (Pb) ions which prevent the use of common metals (i.e. copper, stainless steel, and aluminum). Second, the solution is highly electrical conductive which demands low flow rates (~100nL/min) which make it difficult to multiplex. This thesis reports the design, fabrication, and operation of silicone based multiplexed electrospray (MES) emitters. After reviewing the feasibility of utilizing electrospray as a scalable thin film deposition technique as well as the advantages and limitations of prior MES emitters, we present a design rationale for MES suitable for highly conductive and corrosive fluids. Then we customized a 1064nm fiber laser micromachining system to precisely and rapidly machine silicone sheet and silicon wafers. Laser energy and path are judicially chosen to create clean and round micro posts that form the external structure of the nozzles. For MES with low flow rate per nozzle, it is of vital importance to evenly distribute the liquid into each nozzle on the entire MES array by controlling the pressure drop inside each fluid flow channel. To this end, we modeled the dimension of microfluidic channels that introduce flow impedance overwhelming surface tension at the nozzle tip. We presented v laser microfabrication techniques for fabricating two typical types of microfluidic channels: the through-hole array on conductive silicone sheets and the in-plane microfluidic channel on silicon wafers. Next, we developed a convenient assemble process for the integration of three layers (distributor layer, extractor layer, and collector layer) of the MES emitter. The uniformity of the flow rate among nozzles on MES emitters was investigated by observing the overall spray profiles and measuring the diameter of each jet. The results suggest that the silicone-based MES emitters are feasible for spraying highly conductive and corrosive liquids. The MES emitter developed in this thesis may become a promising tool in scalable manufacturing of thin film perovskite solar cells.
2

Electroplated micro- and nanoscale structures for emitters and sensors

Wang, Xiaochen 01 January 2014 (has links)
In the electroplating process, dissolved metal cations are reduced by electrical current to a form a coherent metal coating on an electrode. Therefore, electroplating is primarily applied to modify the surface properties of an object (e.g. abrasion and wear resistance, corrosion protection, lubricity, aesthetic qualities, etc.), but also be applied to build up high aspect ratio structures on undersized parts or to form devices by electroforming. Compared with other common MEMS (microelectromechanical systems) metal device fabrication techniques, such as vapor depositions, electroplating has several outstanding advantages. First, the fabrication process is cost-efficient because electroplating process can be set up easily without complex and expensive facilities. Second, the fabrication condition of electroplating is less demanding and does not require high temperature or low pressure. Furthermore, the process is applicable to making various features consisting of nanometer to millimeter scale particles, wires, and films. Thus, in this thesis, based on the design requirements of electrospray emitters and environmental sensors, the electroplating method was chosen to fabricate micro- and nanoscale structures for such applications. Electrospray is an atomization technique by which an electrically conductive liquid through a small capillary is charged with high voltage (kV) and ejected to a ground electrode. To minimize the electric field edge effect of the emitter nozzles to get even electro-hydrodynamic pulling force on the liquid among the nozzles and minimize variation from one emitter to another, the device needs to have the viscous pressure drop across each nozzle dominant over the electro-hydrodynamic pulling force. Therefore, embedded structures that can create high flow impedance are desirable to achieve uniform feeding of low flow rate of liquid to each emitter. We designed and fabricated in-plane metallic electrospray devices with an embedded array of micropillars within a microchannel by photolithography and electroplating. The novelty of the proposed research lies in its embedded flow restriction structure, scalability, and ease of fabrication. The formation of jets as well as the flexing capability of the emitter was achieved. The other application of electroplating was demonstrated in the fabrication of environmental sensors. Utilizing a pulsed electroplating method, Co-Cu metal alloy films were prepared and Cu was selectively etched to fabricate nanoporous electrodes which could be used to measure both absolute levels and changes of phosphate concentration in aqueous environments. The formation of cobalt phosphate compound could be used for the detection. The increased surface area and relatively simple fabrication protocols make the proposed method attractive and promising for many environmental sensing applications.

Page generated in 0.0881 seconds