• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beitrag zur Entwicklung des Elektronenstrahl-Mehrspot/Mehrprozess-Schweißens von Gusseisen/Gusseisen- und Gusseisen/Stahl-Verbindungen ohne Schweißzusatzstoffe

Rüthrich, Karsten 24 July 2014 (has links) (PDF)
Ziel der Arbeit war die Entwicklung des Elektronenstrahl-Mehrspot/Mehrprozess-Schweißens für Gusseisen/Gusseisen- und Gusseisen/Stahl-Verbindungen ohne Schweißzusatzstoffe. Im Vergleich zum Einbad-Schweißen entsteht beim Mehrbad-Schweißen eine porenarme Schweißnaht, gleichzeitig senkt sich die Schweißnahthärte geringfügig ab. Dabei kann die Kaltrissbildung in der Schweißnaht für arteigene Gusseisen-Verbindungen nicht unterdrückt werden. Für Mischverbindungen ist der Strahlversatz der bestimmende Schweißparameter beim Mehrbad-Schweißen. Über diesen kann sowohl die chemische Zusammensetzung der Schweißnaht eingestellt als auch ohne Vorwärmen eine kaltrissfreie Schweißnaht für Gusseisen/Stahl-Verbindungen erzeugt werden. Für die prozessintegrierte Wärmebehandlung der Fügezone wurde ein neues EB-Thermofeld entwickelt. Durch den Thermofeldeinsatz konnte die Aufhärtung in der Schmelz- und Wärmeeinflusszone signifikant reduziert werden und die mechanischen Eigenschaften der Schweißverbindungen wurden deutlich verbessert.
2

Beitrag zur Entwicklung des Elektronenstrahl-Mehrspot/Mehrprozess-Schweißens von Gusseisen/Gusseisen- und Gusseisen/Stahl-Verbindungen ohne Schweißzusatzstoffe

Rüthrich, Karsten 17 April 2014 (has links)
Ziel der Arbeit war die Entwicklung des Elektronenstrahl-Mehrspot/Mehrprozess-Schweißens für Gusseisen/Gusseisen- und Gusseisen/Stahl-Verbindungen ohne Schweißzusatzstoffe. Im Vergleich zum Einbad-Schweißen entsteht beim Mehrbad-Schweißen eine porenarme Schweißnaht, gleichzeitig senkt sich die Schweißnahthärte geringfügig ab. Dabei kann die Kaltrissbildung in der Schweißnaht für arteigene Gusseisen-Verbindungen nicht unterdrückt werden. Für Mischverbindungen ist der Strahlversatz der bestimmende Schweißparameter beim Mehrbad-Schweißen. Über diesen kann sowohl die chemische Zusammensetzung der Schweißnaht eingestellt als auch ohne Vorwärmen eine kaltrissfreie Schweißnaht für Gusseisen/Stahl-Verbindungen erzeugt werden. Für die prozessintegrierte Wärmebehandlung der Fügezone wurde ein neues EB-Thermofeld entwickelt. Durch den Thermofeldeinsatz konnte die Aufhärtung in der Schmelz- und Wärmeeinflusszone signifikant reduziert werden und die mechanischen Eigenschaften der Schweißverbindungen wurden deutlich verbessert.
3

Beitrag zum Elektronenstrahlfügen von TRIP-Matrix Kompositen

Halbauer, Lars 17 July 2020 (has links)
In der vorliegenden Arbeit wurde die Schweißbarkeit von hochlegierten TRIP-Matrix Verbundwerkstoffen (TMC) mit und ohne MgO teilstabilisiertem ZrO2 (Mg-PSZ) als Partikelverstärkungsphase mit Hilfe des Elektronenstrahl-Fügeverfahrens erstmals umfassend untersucht. An arteigenen, partikelfreien Fügeverbindungen wurde durch eine breite Parametervariation die Schweißnahtgeometrie, sowie die Auswirkungen des lokalen Temperaturgradienten auf die Mikrostrukturentwicklung untersucht. Die Schweißbarkeit der partikelfreien Stahlmatrix (3-9 Gew.-% Ni) ist sehr gut und wird durch die Neigung zum Humping beschränkt, die mit zunehmendem Nickelgehalt abnimmt. Unter quasistatischer und dynamischer Beanspruchung führt das Schweißen zu keiner signifikanten Beeinflussung der mechanischen Kennwerte. Lediglich bei zyklischer Beanspruchung kommt es zu einer Lebensdauerverringerung durch den Schweißprozess, die in der angegebenen Reihenfolge zunimmt: 16-7-3 --> 16-6-9 --> 16-7-6. Des Weiteren wurden zahlreiche Schweißungen an arteigenen, partikelverstärkten Fügeverbindungen durchgeführt, die trotz zahlreicher Optimierungen keine ausreichende Schweißbarkeit aufweisen. Grund dafür ist die Wechselwirkung zwischen Elektronenstrahl und Mg-PSZ-Partikeln, die zur explosionsartigen Verdampfung und der Bildung eines Hohlraums in der Schweißnahtmitte führen. Es wurden deshalb artfremde Schweißversuche durchgeführt, die in Abhängigkeit der Schweißgeschwindigkeit Rückschlüsse auf die zulässige Menge an Mg-PSZ in der Schweißzone zuließen. Durch EBSD und TEM-Untersuchungen konnten Grenzzustände für die Aufschmelzung des Verbundwerkstoffs identifiziert werden. Im letzten Teil der Arbeit wurde erstmal ein EB-Lötprozess mit Hilfe einer im Rahmen der Arbeit entwickelt und optimierten temperaturgesteuerten Leistungsregelung erfolgreich realisiert. Durch numerische Berechnungen konnte sowohl die laterale Energieverteilungsfunktion des Elektronenstrahls als auch die Spaltfüllung durch Wärmeausdehnung optimiert werden. Die entstandenen Lotverbindungen wurden mittels lichtmikroskopischer Aufnahmen und ESBD-Untersuchungen charakterisiert, zeigen eine hervorragende Anbindung durch ein chemisches Schmelzen des TMC-Grundwerkstoffs und besitzen Zugfestigkeiten von Rm ≤ 390 MPa.
4

Analyse des Einflusses verschiedener Kräfte und thermophysikalischer Eigenschaften auf das Elektronenstrahlschweißen von TRIP-Stahl und TRIP-Matrix-Compositen mittels numerischer Thermofluiddynamik

Borrmann, Sebastian 20 April 2022 (has links)
Das Elektronenstrahlschweißen im Vakuum hat sich als zuverlässiges Verfahren für die Herstellung schmaler und hochpräziser Schweißnähte beim Schweißen von TRIP-Stählen bewährt. Das Verständnis für die dabei auftretenden Mechanismen und wirkenden Kräfte stellt einen wichtigen Baustein für die Weiterentwicklung des Verfahrens dar. Um zur Erweiterung dieses Verständnisses beizutragen, wird auf Basis vorhandener Berechnungsmethoden in OpenFOAM ein numerisches Modell für das Elektronenstrahlschweißen entwickelt. Es ist in der Lage, die dafür relevanten Einflussfaktoren zu berücksichtigen. So werden die Wärmeübertragung im Feststoff und der Schmelze, alle Aggregatzustandsänderungen und die auf die Dynamik der Schmelze wirkenden Kräfte einbezogen. Das entwickelte Simulationsmodell ist in der Lage zu zeigen, dass außer der natürlichen Konvektion vor allem der beim Verdampfen der Schmelze entstehende Überdruck und die thermokapillare Konvektion an der Schmelzeoberfläche für hohe Strömungsgeschwindigkeiten verantwortlich sind. Darüber hinaus haben neben der Schmelzbaddynamik die thermophysikalischen Eigenschaften des Stahls einen starken Einfluss auf die Ausprägung der Schweißnaht. Vor allem die Wärmeleitfähigkeit verändert diese erheblich, was die Simulationen unter Berücksichtigung der Temperaturabhängigkeit verdeutlichen. Die in dieser Arbeit erreichten Erkenntnisse helfen, die beim Elektronenstrahlschweißen entstehenden Nahtgeometrien und die Gründe für hohe Strömungsgeschwindigkeiten im Schmelzbad besser einordnen und verstehen zu können. Darüber hinaus dient das entwickelte numerische Modell mit der Berücksichtigung aller relevanten Mechanismen als Grundlage für Weiterentwicklungen hinsichtlich vielerlei Anwendungen, beispielsweise für das Schweißen anderer Werkstoffe, zusätzliche Effekte wie dem Spiking oder anderen Elektronenstrahltechnologien wie dem Elektronenstrahlschmelzen im Bereich der additiven Fertigung.

Page generated in 0.3363 seconds